Treffer: Convex Optimization Techniques for Geometric Covering Problems

Title:
Convex Optimization Techniques for Geometric Covering Problems
Publication Year:
2019
Collection:
Cologne University: KUPS
Subject Terms:
Document Type:
Dissertation doctoral or postdoctoral thesis
File Description:
application/pdf
Language:
German
English
Relation:
https://kups.ub.uni-koeln.de/9917/1/DissertationRolfes.pdf; Rolfes, Jan Hendrik (2019). Convex Optimization Techniques for Geometric Covering Problems. PhD thesis, Universität zu Köln.
Accession Number:
edsbas.1227AB22
Database:
BASE

Weitere Informationen

The present thesis is a commencement of a generalization of covering results in specific settings, such as the Euclidean space or the sphere, to arbitrary compact metric spaces. In particular we consider coverings of compact metric spaces $(X,d)$ by balls of radius $r$. We are interested in the minimum number of such balls needed to cover $X$, denoted by $\Ncal(X,r)$. For finite $X$ this problem coincides with an instance of the combinatorial \textsc{set cover} problem, which is $\mathrm{NP}$-complete. We illustrate approximation techniques based on the moment method of Lasserre for finite graphs and generalize these techniques to compact metric spaces $X$ to obtain upper and lower bounds for $\Ncal(X,r)$. \\ The upper bounds in this thesis follow from the application of a greedy algorithm on the space $X$. Its approximation quality is obtained by a generalization of the analysis of Chv\'atal's algorithm for the weighted case of \textsc{set cover}. We apply this greedy algorithm to the spherical case $X=S^n$ and retrieve the best non-asymptotic bound of B\"or\"oczky and Wintsche. Additionally, the algorithm can be used to determine coverings of Euclidean space with arbitrary measurable objects having non-empty interior. The quality of these coverings slightly improves a bound of Nasz\'odi. \\ For the lower bounds we develop a sequence of bounds $\Ncal^t(X,r)$ that converge after finitely (say $\alpha\in\N$) many steps: $$\Ncal^1(X,r)\leq \ldots \leq \Ncal^\alpha(X,r)=\Ncal(X,r).$$ The drawback of this sequence is that the bounds $\Ncal^t(X,r)$ are increasingly difficult to compute, since they are the objective values of infinite-dimensional conic programs whose number of constraints and dimension of underlying cones grow accordingly to $t$. We show that these programs satisfy strong duality and derive a finite dimensional semidefinite program to approximate $\Ncal^2(S^2,r)$ to arbitrary precision. Our results rely in part on the moment methods developed by de Laat and Vallentin for the packing problem on ...