Treffer: Asymptotic Result for a Decoupled Nonlinear Elasticity-Based Multiscale Registration Model
Title:
Asymptotic Result for a Decoupled Nonlinear Elasticity-Based Multiscale Registration Model
Authors:
Contributors:
Institut Pascal (IP), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne), Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA), SIGMA Clermont (SIGMA Clermont)-Université Clermont Auvergne 2017-2020 (UCA 2017-2020 )-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques de l'INSA de Rouen Normandie (LMI), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)
Source:
Scale Space and Variational Methods in Computer Vision ; Scale Space and Variational Methods in Computer Vision 2023 ; https://uca.hal.science/hal-04438991 ; Scale Space and Variational Methods in Computer Vision 2023, Scale Space and Variational Methods in Computer Vision, 14009, Springer International Publishing, pp.639-651, 2023, Lecture Notes in Computer Science, 978-3-031-31974-7. ⟨10.1007/978-3-031-31975-4_49⟩
Publisher Information:
CCSD
Springer International Publishing
Springer
Springer International Publishing
Springer
Publication Year:
2023
Collection:
Normandie Université: HAL
Subject Terms:
Document Type:
Konferenz
conference object
Language:
English
DOI:
10.1007/978-3-031-31975-4_49
Availability:
Rights:
http://hal.archives-ouvertes.fr/licences/copyright/ ; info:eu-repo/semantics/OpenAccess
Accession Number:
edsbas.139D696B
Database:
BASE
Weitere Informationen
International audience ; In this paper, a theoretical asymptotic result in relation to the nonlinear elasticity-based multiscale registration model [Debroux et al. 2023] is proved. Specifically, it establishes a link between the original minimisation problem comprising high non linearity and non convexity, and the one derived from splitting techniques by means of auxiliary variables and L p-penalisations which exhibits increased numerical manageability. This latter problem thus appears to be a good compromise between mechanical/ physical realism and practical feasibility.