Treffer: Discrete Morse Theory

Title:
Discrete Morse Theory
Source:
Faculty Monographs and Chapters
Publisher Information:
Digital Commons @ Ursinus College
Publication Year:
2019
Collection:
DigitalCommons@Ursinus College
Document Type:
Fachzeitschrift text
Language:
unknown
Accession Number:
edsbas.176DE8B3
Database:
BASE

Weitere Informationen

Discrete Morse theory is a powerful tool combining ideas in both topology and combinatorics. Invented by Robin Forman in the mid 1990s, discrete Morse theory is a combinatorial analogue of Marston Morse's classical Morse theory. Its applications are vast, including applications to topological data analysis, combinatorics, and computer science. This book, the first one devoted solely to discrete Morse theory, serves as an introduction to the subject. Since the book restricts the study of discrete Morse theory to abstract simplicial complexes, a course in mathematical proof writing is the only prerequisite needed. Topics covered include simplicial complexes, simple homotopy, collapsibility, gradient vector fields, Hasse diagrams, simplicial homology, persistent homology, discrete Morse inequalities, the Morse complex, discrete Morse homology, and strong discrete Morse functions. Students of computer science will also find the book beneficial as it includes topics such as Boolean functions, evasiveness, and has a chapter devoted to some computational aspects of discrete Morse theory. The book is appropriate for a course in discrete Morse theory, a supplemental text to a course in algebraic topology or topological combinatorics, or an independent study. ; https://digitalcommons.ursinus.edu/faculty_books/1014/thumbnail.jpg