Treffer: Channel Estimation in Multi-user Massive MIMO Systems by Expectation Propagation based Algorithms
Weitere Informationen
Massive multiple input multiple output (MIMO) technology uses large antenna arrays with tens or hundreds of antennas at the base station (BS) to achieve high spectral efficiency, high diversity, and high capacity. These benefits, however, rely on obtaining accurate channel state information (CSI) at the receiver for both uplink and downlink channels. Traditionally, pilot sequences are transmitted and used at the receiver to estimate the CSI. Since the length of the pilot sequences scale with the number of transmit antennas, for massive MIMO systems downlink channel estimation requires long pilot sequences resulting in reduced spectral efficiency and the so-called pilot contamination due to sharing of the pilots in adjacent cells. In this dissertation we first review the problem of channel estimation in massive MIMO systems. Next, we study the problem of semi-blind channel estimation in the uplink in the case of spatially correlated time-varying channels. The proposed method uses the transmitted data symbols as virtual pilots to enhance channel estimation. An expectation propagation (EP) algorithm is developed to iteratively approximate the joint a posterior distribution of the unknown channel matrix and the transmitted data symbols with a distribution from an exponential family. The distribution is then used for direct estimation of the channel matrix and detection of the data symbols. A modified version of Kalman filtering algorithm referred to as KF-M emerges from our EP derivation and it is used to initialize our algorithm. Simulation results demonstrate that channel estimation error and the symbol error rate of the proposed algorithm improve with the increase in the number of BS antennas or the number of data symbols in the transmitted frame. Moreover, the proposed algorithms can mitigate the effects of pilot contamination as well as time-variations of the channel. Next, we study the problem of downlink channel estimation in multi-user massive MIMO systems. Our approach is based on Bayesian compressive ...