Méthodes Formelles pour la Bioinformatique (LS2N - équipe MéForBio), Laboratoire des Sciences du Numérique de Nantes (LS2N), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT), Max-Planck-Institut für Informatik (MPII), Max-Planck-Gesellschaft, Dynamics, Logics and Inference for biological Systems and Sequences (Dyliss), Centre Inria de l'Université de Rennes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-GESTION DES DONNÉES ET DE LA CONNAISSANCE (IRISA-D7), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut de recherche en santé, environnement et travail (Irset), Université d'Angers (UA)-Université de Rennes (UR)-École des Hautes Études en Santé Publique (EHESP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes (Biosit : Biologie - Santé - Innovation Technologique), Institut de Calcul Intensif (ICI), École Centrale de Nantes (ECN), Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers Cnam (Cnam)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, National Institute of Informatics (NII), ANR-14-CE09-0011,HYCLOCK,Modélisation Hybride Formelle du Temps pour la Biologie des Horloges Circadiennes et la Chronopharmacologie(2014)
Source:
27th International Conference on Inductive Logic Programming https://hal.science/hal-01655644 27th International Conference on Inductive Logic Programming, LNCS, volume 10759, Springer, Cham, pp.124-139, 2018, Inductive Logic Programming, ⟨10.1007/978-3-319-78090-0_9⟩ https://ilp2017.sciencesconf.org/
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10759)Also part of the Lecture Notes in Artificial Intelligence book sub series (LNAI, volume 10759) ; International audience ; Learning from interpretation transition (LFIT) automatically constructs a model of the dynamics of a system from the observation of its state transitions. So far, the systems that LFIT handles are restricted to discrete variables or suppose a discretization of continuous data. However, when working with real data, the discretization choices are critical for the quality of the model learned by LFIT. In this paper, we focus on a method that learns the dynamics of the system directly from continuous time-series data. For this purpose, we propose a modelling of continuous dynamics by logic programs composed of rules whose conditions and conclusions represent continuums of values.