Treffer: Moments of the Count of a Regular Expression in a Heterogeneous Random Sequence

Title:
Moments of the Count of a Regular Expression in a Heterogeneous Random Sequence
Authors:
Contributors:
Institut National des Sciences Mathématiques et de leurs Interactions - CNRS Mathématiques (INSMI-CNRS), Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Source:
ISSN: 1387-5841.
Publisher Information:
CCSD
Springer Verlag
Publication Year:
2019
Document Type:
Fachzeitschrift article in journal/newspaper
Language:
English
DOI:
10.1007/s11009-019-09700-0
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edsbas.4165DBAD
Database:
BASE

Weitere Informationen

International audience ; We focus here on the distribution of the random count N of a regular expression in a multi-state random sequence generated by a heterogenous Markov source. We first briefly recall how classical Markov chain embedding techniques allow reducing the problem to the count of specific transitions in a (heterogenous) order 1 Markov chain over a deterministic finite automaton state space. From this result we derive the expression of both the mgf/pgf of N as well as the factorial and non-factorial moments of N. We then introduce the notion of evidence-based constraints in this context. Following the classical forward/backward algorithm in hidden Markov models, we provide explicit recursions allowing to compute the mgf/pgf of N under the evidence constraint. All the results presented are illustrated with a toy example.