https://revistas.udistrital.edu.co/index.php/visele/article/view/23790/20991; A. O. Hourani y M. Z. Iskandarani, “Design, Modelling, and Analysis of Legged Robot for Terrains Exploration”, Int. J. Adv. Sci., Eng. Inf. Technol., vol. 13, n. º 3, pp. 1127–1128, junio de 2023.
https://doi.org/10.18517/ijaseit.13.3.19000 [2] S. Bazeille et al., “Quadruped robot trotting over irregular terrain assisted by stereo-vision”, Intell. Service Robot., vol. 7, n. º 2, pp. 67–69, marzo de 2014.
https://doi.org/10.1007/s11370-014-0147-9 [3] A. O. Baturone, Robótica: Manipuladores y Robots Móviles. Marcombo, 2005. [4] X. Gao et al., "Review of Wheeled Mobile Robots’ Navigation Problems and Application Prospects in Agriculture," in IEEE Access, vol. 6, pp. 49248-49268, 2018, doi:10.1109/ACCESS.2018.2868848. [5] Robotics at Home with Raspberry Pi Pico: Build autonomous robots with the versatile low-cost Raspberry Pi Pico controller and Python. Packt Publ., 2023. [6] N. Pudchuen, C. Deelertpaiboon, W. Jitviriya and A. Phunopas, "VENRiR: Vision Enhance for Navigating 4-legged Robot in Rough Terrain," 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Chiang Mai, Thailand, 2020, pp. 1410-1415, doi:10.23919/SICE48898.2020.9240424. [7] C. E. López Rodríguez and Y. L. Vargas Castiblanco, “Importancia de los procesos de automatización en el sector agrícola colombiano,” ID EST – Revista Investigación, Desarrollo, Educación, Servicio y Trabajo, vol. 4, no. 2, p. 4, 2024.
https://revista.fundes.edu.co/index.php/revista/article/view/264. [8] Desarrollo de la agricultura colombiana. Fedesarrollo, 2014. [9] Bellicoso, C. D., Bjelonic, M., Wellhausen, L., Holtmann, K., Günther, F., Tranzatto, M., . & Hutter, M. (2018). Advances in real‐world applications for legged robots. Journal of Field Robotics, 35(8), 1311-1326. [10] C. Quail, E. Emonot–de Carolis and F. Auat Cheein, "Legged Robots in the Agricultural Context: Analysing Their Traverse Capabilities and Performance," IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society, Singapore, Singapore, 2023, pp. 01-07, doi:10.1109/IECON51785.2023.10312233. [11] “Development of a quadruped robot platform for optimizing wheat and corn field for phenotyping”. University of Minnesota driven to discover.
https://conservancy.umn.edu/items/69f6a205-2789-4095-8c6d-df2e227bf462.com [12] M. F. Silva y J. A. Tenreiro Machado, “A Historical Perspective of Legged Robots”, J. Vib. Control, vol. 13, n. º 9-10, pp. 1447–1455, septiembre de 2007.
https://doi.org/10.1177/1077546307078276 [13] Q. Li, F. Cicirelli, A. Vinci, A. Guerrieri, W. Qi y G. Fortino, “Quadruped Robots: Bridging Mechanical Design, Control, and Applications”, Robotics, vol. 14, n. º 5, pp. 5–8, abril de 2025.
https://doi.org/10.3390/robotics14050057 [14] M. Aguilera Hernández, M. Bautista y J. Iruegas, “Diseño y Control de Robots Móviles”, Asoc. Mex. Mecatronica AC., pp. 1–6, 2003. [15] J. M. Robles Atuesta. “Diseño y prototipado del mecanismo de locomoción para un robot cuadrúpedo”. Universidad de los Andes Colombia.
https://hdl.handle.net/1992/45035 [16] J. Fu y F. Gao, “Dynamic stability analyzes for a parallel–serial legged quadruped robot”, Int. J. Adv. Robotic Syst., vol. 19, n. º 5, pp. 3–5, septiembre de 2022.
https://doi.org/10.1177/17298806221132081 [17] J. Li, J. Wang, S. X. Yang, K. Zhou y H. Tang, “Gait Planning and Stability Control of a Quadruped Robot”, Comput. Intell. Neurosci., vol. 2016, pp. 1–13, 2016.
https://doi.org/10.1155/2016/9853070 [18] Q. Cong et al., “Stability Study and Simulation of Quadruped Robots with Variable Parameters”, Appl. Bionics Biomechanics, vol. 2022, pp. 1–9, enero de 2022.
https://doi.org/10.1155/2022/9968042 [19] P.-B. Wieber, R. Tedrake y S. Kuindersma, “Modeling and Control of Legged Robots,” en Springer Handbook of Robotics, 2ª ed., B. Siciliano y O. Khatib, eds., Springer, 2016, pp. 1213–1223.
https://doi.org/10.1007/978-3-319-32552-1_48. [20] R. Zwetsloot. “Control servos with CircuitPython and Raspberry Pi”. Raspberry Pi Official Magazine.
https://magazine.raspberrypi.com/articles/control-servos-circuitpython-raspberry-pi?.com [21] C. Bell, Beginning MicroPython with the Raspberry Pi Pico. Berkeley, CA: Apress, 2022.
https://doi.org/10.1007/978-1-4842-8135-2 [22] Automacion, “Servomotores: control, precisión y velocidad”, AADECA, vol. 4, p. 2, 2017. [23] J. Kim, T. Kang, D. Song y S.-J. Yi, “Design and Control of a Open-Source, Low Cost, 3D Printed Dynamic Quadruped Robot”, Appl. Sci., vol. 11, n. º 9, p. 3762, abril de 2021. Accedido el 15 de julio de 2025.
https://doi.org/10.3390/app11093762 [24] E. Garcia, P. González-de-Santos y J. Estremera, Quadrupedal Locomotion: An Introduction to the Control of Four-legged Robots. Springer, 2006. [25] Z. Gacovski, Ed., Mobile Robots - Current Trends. InTech, 2011.
https://doi.org/10.5772/2305 [26] G. Raghavendra, B. B. V. L. Deepak y M. Gupta, Eds., Recent Advances in Mechanical Engineering, Volume 1. Singapore: Springer Nature Singap., 2024.
https://doi.org/10.1007/978-981-97-0918-2 [27] Z. Y. Du y B. Liu, Advanced Mechanical Engineering. Trans Tech Publ. LTD, 2010.
https://doi.org/10.4028/b-v26glh [28] 東京バード. (2021, 12 de julio). Arduinoで動かす4足歩行ロボット製作ノート!Arduino学習に便利なロボくんなので使って下さい!【STLデータ公開】. ぶらり@web走り書き.
https://burariweb.info/electronic-work/4legged-waking-robot-production-notes.html [29] M. Stefik and D. G. Bobrow, “Object-Oriented Programming: Themes and Variations”, AIMag, vol. 6, no. 4, p. 40, Dec. 1985.
https://doi.org/10.1609/aimag.v6i4.508;
https://revistas.udistrital.edu.co/index.php/visele/article/view/23790