Treffer: КРИТЕРИИ ФУНКЦИОНАЛЬНОЙ РАЗДЕЛИМОСТИ КВАДРАТИЧНЫХ БУЛЕВЫХ ПОРОГОВЫХ ФУНКЦИЙ
Weitere Informationen
Работа продолжает исследование функциональной структуры булевых функций, задаваемых действительными линейными неравенствами. Рассматриваются булевы функции, определяемые одним нелинейным неравенством второй степени. Многочлены второй степени среди всех нелинейных многочленов обладают наименьшим размером задания, т. е. свойством, существенным в ряде прикладных задач. Доказаны три критерия функциональной разделимости для булевых квадратичных пороговых функций. Второй критерий не требует анализа табличного задания функции и формулируется в терминах пороговой структуры. ; Threshold functions provide a simple but fundamental model for many questions investigated in image recognition, artificial neural networks and many other areas. In this paper, the results in Boolean threshold function decomposition are advanced to Boolean functions represented by one quadratic inequality. Quadratic polynomials are the most compact non-linear polynomials and this property sometimes is quite important. We prove three criteria for non-trivial decomposition of quadratic Boolean threshold functions. One of them can be applied without analysis of truth table and only uses the threshold structure parameters.