Treffer: dnadna: a deep learning framework for population genetics inference

Title:
dnadna: a deep learning framework for population genetics inference
Contributors:
Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), BioInformatique - LISN (BioInfo), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Science des Données (SDD), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), TAckling the Underspecified (TAU), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre Inria de l'Université Paris-Saclay, Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria), Accompagnement et Soutien aux Activités de Recherche & Développement - LISN (ASARD), Éco-Anthropologie (EA 7206), Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Evolution et ingénierie de systèmes dynamiques (SEED (UMR-S 1284/U 1284)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), ANR-20-CE45-0010,RoDAPoG,Apprentissage profond robuste pour la génomique des populations(2020)
Source:
ISSN: 1367-4803.
Publisher Information:
CCSD
Oxford University Press (OUP)
Publication Year:
2023
Document Type:
Fachzeitschrift article in journal/newspaper
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/pmid/36445000; PUBMED: 36445000
DOI:
10.1093/bioinformatics/btac765
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edsbas.54EE35F3
Database:
BASE

Weitere Informationen

International audience ; Motivation: We present dnadna, a flexible python-based software for deep learning inference in population genetics. It is task-agnostic and aims at facilitating the development, reproducibility, dissemination, and reusability of neural networks designed for population genetic data.Results: dnadna defines multiple user-friendly workflows. First, users can implement new architectures and tasks, while benefiting from dnadna utility functions, training procedure and test environment, which saves time and decreases the likelihood of bugs. Second, the implemented networks can be re-optimized based on user-specified training sets and/or tasks. Newly implemented architectures and pretrained networks are easily shareable with the community for further benchmarking or other applications. Finally, users can apply pretrained networks in order to predict evolutionary history from alternative real or simulated genetic datasets, without requiring extensive knowledge in deep learning or coding in general.dnadna comes with a peer-reviewed, exchangeable neural network, allowing demographic inference from SNP data, that can be used directly or retrained to solve other tasks. Toy networks are also available to ease the exploration of the software, and we expect that the range of available architectures will keep expanding thanks to community contributions.Availability and Implementation: dnadna is a Python (≥ 3.7) package, its repository is available at gitlab.com/mlgenetics/dnadna and its associated documentation at mlgenetics.gitlab.io/dnadna/.