Treffer: In the Search for Truth: Navigating Variability in Neuroimaging Software Pipelines

Title:
In the Search for Truth: Navigating Variability in Neuroimaging Software Pipelines
Contributors:
Neuroimagerie: méthodes et applications (EMPENN), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Inria de l'Université de Rennes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-SIGNAL, IMAGE ET LANGAGE (IRISA-D6), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT), Diversity-centric Software Engineering (DiverSe), Centre Inria de l'Université de Rennes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-LANGAGE ET GÉNIE LOGICIEL (IRISA-D4), Region Bretagne (ARED GUANACO), Association for Computing Machinery (ACM), ANR-23-CE45-0022,VICUNA,Comprendre pourquoi differentes configurations donnent des resultats differents en neurosciences(2023)
Source:
SPLC 2025 - 29th ACM International Systems and Software Product Line Conference ; https://inria.hal.science/hal-05158426 ; SPLC 2025 - 29th ACM International Systems and Software Product Line Conference, Association for Computing Machinery (ACM), Sep 2025, Coruna, Spain, Spain. pp.129-135, ⟨10.1145/3744915.3748470⟩ ; https://2025.splc.net/
Publisher Information:
CCSD
Publication Year:
2025
Subject Geographic:
Document Type:
Konferenz conference object
Language:
English
DOI:
10.1145/3744915.3748470
Rights:
http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
Accession Number:
edsbas.5A888B00
Database:
BASE

Weitere Informationen

International audience ; Neuroimaging pipelines -software-driven analysis workflows of brain images -are characterized by a wide range of tools, parameters, and configuration choices. Such flexibility, while enabling diverse scientific inquiries, gives rise to analytical variability: different pipeline variants can lead to different outcomes. In practice, each neuroimaging pipeline variant produces a statistic map -a complex, structured 3D output whose relevance can only be assessed with specific domain expertise, unlike simple metrics such as execution time. And, in most cases, there is no ground truth against which to judge these outputs, making it unclear which variant yields the best result. In this paper, we introduce a "sampling, variant scoring, learning" methodology to study variability in the absence of a quantitative target -i.e. ground truth. We report our experience in developing an Universal Variability Language (UVL) feature model of 90 features representing the configuration space of a well-established open source neuroimaging analysis software (SPM). We sample and run 1000 valid configurations generating 1000 statistic maps as outputs. We studied various candidate proxy ground truths and computed Spearman correlations as a quantitative metric of the performance of each pipeline. We tested the following 12 proxy ground truths: the average statistic map (across variants), the output of an expertderived configuration, and a set of randomly selected outputs (as baseline). Then, we used a decision tree learning approach to inspect variability. We evaluated the sensitivity of our method to the choice of (proxy) ground truth, both in terms of predictive accuracy and in the identification of important features. These first results outline the challenge of choosing and validating a referential to assess our understanding of variability in the absence of ground truth.