Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Hfs: A performance-oriented flexible file system based on building-block compositions

Title:
Hfs: A performance-oriented flexible file system based on building-block compositions
Contributors:
The Pennsylvania State University CiteSeerX Archives
Publisher Information:
ACM Press
Publication Year:
1997
Collection:
CiteSeerX
Document Type:
Fachzeitschrift text
File Description:
application/pdf
Language:
English
Rights:
Metadata may be used without restrictions as long as the oai identifier remains attached to it.
Accession Number:
edsbas.6284CF7E
Database:
BASE

Weitere Informationen

The Hurricane File System (HFS) is designed for (potentially large-scale) shared-memory multiprocessors. Its architecture is based on the principle that, in order to maximize performance for applications with diverse requirements, a file system must support a wide variety of file structures, file system policies, and I/O interfaces. Files in HFS are implemented using simple building blocks composed in potentially complex ways. This approach yields great flexibility, allowing an application to customize the structure and policies of a file to exactly meet its requirements. As an extreme example, HFS allows a file’s structure to be optimized for concurrent random-access write-only operations by 10 threads, something no other file system can do. Similarly, the prefetching, locking, and file cache management policies can all be chosen to match an application’s access pattern. In contrast, most parallel file systems support a single file structure and a small set of policies. We have implemented HFS as part of the Hurricane operating system running on the Hector shared-memory multiprocessor. We demonstrate that the flexibility of HFS comes with little processing or I/O overhead. We also show that for a number of file access patterns, HFS is able to deliver to the applications the full I/O bandwidth of the disks on our system.