Alshurafat, H., Al Shbail, M. O., Hamdan, A., Al-Dmour, A., & Ensour, W. (2024). Factors affecting accounting students’ misuse of chatgpt: an application of the fraud triangle theory. Journal of Financial Reporting and Accounting, 22(2).
https://doi.org/10.1108/JFRA-04-2023-0182; Boulieris, P., Pavlopoulos, J., Xenos, A., & Vassalos, V. (2024). Fraud detection with natural language processing. Machine Learning, 113(8).
https://doi.org/10.1007/s10994-023-06354-5; Campbell, M., & Jovanović, M. (2023). Detecting Artificial Intelligence: A New Cyberarms Race Begins. Computer, 56(8).
https://doi.org/10.1109/MC.2023.3279446; Chaka, C. (2023). Detecting AI content in responses generated by ChatGPT, YouChat, and Chatsonic: The case of five AI content detection tools. Journal of Applied Learning and Teaching, 6(2).
https://doi.org/10.37074/jalt.2023.6.2.12; Currie, G. M. (2023). Academic integrity and artificial intelligence: is ChatGPT hype, hero or heresy? In Seminars in Nuclear Medicine (Vol. 53, Issue 5, pp. 719–730). W.B. Saunders.
https://doi.org/10.1053/j.semnuclmed.2023.04.008; Demirci, D., Sahin, N., Sirlancis, M., & Acarturk, C. (2022). Static Malware Detection Using Stacked BiLSTM and GPT-2. IEEE Access, 10.
https://doi.org/10.1109/ACCESS.2022.3179384; Dempere, J., Modugu, K., Hesham, A., & Ramasamy, L. K. (2023). The impact of ChatGPT on higher education. In Frontiers in Education (Vol. 8).
https://doi.org/10.3389/feduc.2023.1206936; Gao, C. A., Howard, F. M., Markov, N. S., Dyer, E. C., Ramesh, S., Luo, Y., & Pearson, A. T. (2022). Comparing scientific abstracts generated by ChatGPT to original abstracts using an artificial intelligence output detector, plagiarism detector, and blinded human reviewers. BioRxiv.; Halaweh, M. (2023). ChatGPT in education: Strategies for responsible implementation. Contemporary Educational Technology, 15(2).
https://doi.org/10.30935/cedtech/13036; Hamilton, L. M., & Lahne, J. (2022). Natural Language Processing. In Rapid Sensory Profiling Techniques: Applications in New Product Development and Consumer Research, Second Edition.
https://doi.org/10.1016/B978-0-12-821936-2.00004-2; Harry, A. (2023). Role of AI in Education. Interdiciplinary Journal and Hummanity (INJURITY), 2(3).
https://doi.org/10.58631/injurity.v2i3.52; Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing: state of the art, current trends and challenges. Multimedia Tools and Applications, 82(3).
https://doi.org/10.1007/s11042-022-13428-4; Krause, D. (2023). Mitigating Risks for Financial Firms Using Generative AI Tools. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.4452600; M. Mijwil, M., Hiran, K. K., Doshi, R., Dadhich, M., Al-Mistarehi, A.-H., & Bala, I. (2023). ChatGPT and the Future of Academic Integrity in the Artificial Intelligence Era: A New Frontier. Al-Salam Journal for Engineering and Technology, 2(2), 116–127.
https://doi.org/10.55145/ajest.2023.02.02.015; Mizuno, T., Fujimoto, S., & Ishikawa, A. (2022). Generation of individual daily trajectories by GPT-2. Frontiers in Physics, 10.
https://doi.org/10.3389/fphy.2022.1021176; Ngo, T. T. A. (2023). The Perception by University Students of the Use of ChatGPT in Education. International Journal of Emerging Technologies in Learning, 18(17).
https://doi.org/10.3991/ijet.v18i17.39019; Oh, B. D., & Schuler, W. (2023). Why Does Surprisal From Larger Transformer-Based Language Models Provide a Poorer Fit to Human Reading Times? Transactions of the Association for Computational Linguistics, 11.
https://doi.org/10.1162/tacl_a_00548; Oshikawa, R., Qian, J., & Wang, W. Y. (2018). A Survey on Natural Language Processing for Fake News Detection.
http://arxiv.org/abs/1811.00770; Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (n.d.). Language Models are Unsupervised Multitask Learners.
https://github.com/codelucas/newspaper; Rahman, M. M., & Watanobe, Y. (2023). ChatGPT for Education and Research: Opportunities, Threats, and Strategies. Applied Sciences (Switzerland), 13(9).
https://doi.org/10.3390/app13095783; Rajanak, Y., Patil, R., & Singh, Y. P. (2023). Language Detection Using Natural Language Processing. 2023 9th International Conference on Advanced Computing and Communication Systems, ICACCS 2023.
https://doi.org/10.1109/ICACCS57279.2023.10112773; Scanlon, M., Breitinger, F., Hargreaves, C., Hilgert, J. N., & Sheppard, J. (2023). ChatGPT for digital forensic investigation: The good, the bad, and the unknown. Forensic Science International: Digital Investigation, 46.
https://doi.org/10.1016/j.fsidi.2023.301609; Schönberger, M. (2023). ChatGPT in higher education: the good, the bad, and the University. International Conference on Higher Education Advances.
https://doi.org/10.4995/HEAd23.2023.16174; Shah, F., Anwar, A., Ul Haq, I., Alsalman, H., Hussain, S., & Al-Hadhrami, S. (2022). Artificial Intelligence as a Service for Immoral Content Detection and Eradication. Scientific Programming, 2022.
https://doi.org/10.1155/2022/6825228; Uzun, L. (2023). ChatGPT and Academic Integrity Concerns: Detecting Artificial Intelligence Generated Content. Language Education and Technology, 3(1), 45–54.
http://www.langedutech.com/letjournal/index.php/let/article/view/49; Vismay Vora, E. al. (2023). A Multimodal Approach for Detecting AI Generated Content using BERT and CNN. International Journal on Recent and Innovation Trends in Computing and Communication, 11(9), 691–701.
https://doi.org/10.17762/ijritcc.v11i9.8861; Wu, Q., Jiang, H., Yin, H., Karlsson, B. F., & Lin, C. Y. (2023). Multi-Level Knowledge Distillation for Out-of-Distribution Detection in Text. Proceedings of the Annual Meeting of the Association for Computational Linguistics, 1.
https://doi.org/10.18653/v1/2023.acl-long.403;
https://hdl.handle.net/20.500.12495/14069