Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Semantičko pretraživanje tekstualnih baza znanja u poslovnoj domeni ; Semantic Search of Text-based Knowledge Repositories in Business Domains

Title:
Semantičko pretraživanje tekstualnih baza znanja u poslovnoj domeni ; Semantic Search of Text-based Knowledge Repositories in Business Domains
Authors:
Contributors:
Pintar, Damir
Publisher Information:
Sveučilište u Zagrebu. Fakultet elektrotehnike i računarstva.
University of Zagreb. Faculty of Electrical Engineering and Computing.
Publication Year:
2019
Collection:
Croatian Digital Theses Repository (National and University Library in Zagreb)
Document Type:
Dissertation master thesis
File Description:
application/pdf
Language:
Croatian
Rights:
http://rightsstatements.org/vocab/InC/1.0/ ; info:eu-repo/semantics/closedAccess
Accession Number:
edsbas.6FE8A7C8
Database:
BASE

Weitere Informationen

Za izvlačenje korisnih informacija iz velike količine podataka potrebne su sofisticirane metode pretraživanja podataka. U slučaju sustava odgovaranja na upit potrebne su metode obrade upita, dohvaćanja podataka i odabira prikladnog odgovora. Ovaj rad bavi se izvlačenjem rečenice iz baze znanja koja predstavlja odgovor na pitanje upućeno sustavu. Većina rada posvećena je mjerenju semantičke sličnosti između pitanja i potencijalnog odgovora na hrvatskom jeziku. Implementirano je nekoliko tehnika reprezentiranja rečenica vektorom. Rad zaključuje da je običan TF-IDF vektor rečenice i kosinusna sličnost rečenica i dalje najbolja metoda usporedbe rečenica s obzirom na robusnost metode i lakoću korištenja. ; For large amounts of textual information to be useful, appropriate search methods need to exist. In case of a question-answering system, methods of information retrieval, question processing and question answering are crucial. This thesis deals with non-factoid question answering where the answer is usually a sentence. Therefore, most of the work in the thesis is devoted to question-sentence semantic similarity task tested on Croatian language. Several sentence embedding techniques have been tested with various results. Thesis concludes that plain TF-IDF vectors of sentences combined with cosine similarity is still the preferable option for sentence comparison due to its robustness and ease of use.