Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Fast Marching Energy CNN

Title:
Fast Marching Energy CNN
Contributors:
CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019)
Source:
Lecture Notes in Computer Science ; International Conference on Scale Space and Variational Methods in Computer Vision ; https://hal.science/hal-04145447 ; International Conference on Scale Space and Variational Methods in Computer Vision, May 2023, Santa Margherita di Pula, Italy. ⟨10.1007/978-3-031-31975-4_21⟩
Publisher Information:
CCSD
Publication Year:
2023
Subject Geographic:
Document Type:
Konferenz conference object
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/arxiv/2306.16109; ARXIV: 2306.16109
DOI:
10.1007/978-3-031-31975-4_21
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edsbas.73B3B2C2
Database:
BASE

Weitere Informationen

International audience ; Leveraging geodesic distances and the geometrical information they convey is key for many data-oriented applications in imaging. Geodesic distance computation has been used for long for image segmentation using Image based metrics. We introduce a new method by generating isotropic Riemannian metrics adapted to a problem using CNN and give as illustrations an example of application. We then apply this idea to the segmentation of brain tumours as unit balls for the geodesic distance computed with the metric potential output by a CNN, thus imposing geometrical and topological constraints on the output mask. We show that geodesic distance modules work well in machine learning frameworks and can be used to achieve state-of-the-art performances while ensuring geometrical and/or topological properties.