Treffer: Melting and spread of polymers in fire with the particle finite element method

Title:
Melting and spread of polymers in fire with the particle finite element method
Contributors:
Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental, Centre Internacional de Mètodes Numèrics en Enginyeria, Universitat Politècnica de Catalunya. GMNE - Grup de Mètodes Numèrics en Enginyeria, Universitat Politècnica de Catalunya. RMEE - Grup de Resistència de Materials i Estructures en l'Enginyeria
Publication Year:
2009
Collection:
Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge
Document Type:
Report report
File Description:
22 p.; application/pdf
Language:
English
Relation:
PI 333; https://www.scipedia.com/public/Onate_et_al_2009a; Oñate, E. [et al.]. "Melting and spread of polymers in fire with the particle finite element method". 2009.; http://hdl.handle.net/2117/172212
Rights:
Open Access
Accession Number:
edsbas.75A6C0DD
Database:
BASE

Weitere Informationen

A new computational procedure for analysis of the melting and flame spread of polymers under fire conditions is presented. The method, termed Particle Finite Element Method (PFEM), combines concepts from particle-based techniques with those of the standard finite element method (FEM). The key feature of the PFEM is the use of an updated Lagrangian description to model the motion of nodes (particles) in the thermoplastic material. Nodes are viewed as material points which can freely move and even separate from the main analysis domain representing, for instance, the effect of melting and dripping of polymer particles. A mesh connects the nodes defining the discretized domain where the governing equations are solved as in the standard FEM. An incremental iterative scheme for the solution of the nonlinear transient coupled thermal-flow problem, including loss of mass by gasification, is used. Examples of the possibilities of the PFEM for the modelling and simulation of the melting and flame spread of polymers under different fire conditions are described. Numerical results are compared with experimental data provided by NIST. ; Preprint