Treffer: SCONet: Convolutional Occupancy Networks for Multi-Organ Segmentation

Title:
SCONet: Convolutional Occupancy Networks for Multi-Organ Segmentation
Contributors:
Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Modeling & analysis for medical imaging and Diagnosis (MYRIAD), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Origami (Origami), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Imagerie Tomographique et Radiothérapie, ANR-19-CE45-0015,TOPACS,Traitement Ouvert de données PACS(2019)
Source:
2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI)
https://hal.science/hal-05066849
2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI), Apr 2025, Houston, United States. pp.1-5, ⟨10.1109/ISBI60581.2025.10980745⟩
Publisher Information:
CCSD
IEEE
Publication Year:
2025
Collection:
Université Jean Monnet – Saint-Etienne: HAL
Subject Geographic:
Time:
Houston, United States
Document Type:
Konferenz conference object
Language:
English
DOI:
10.1109/ISBI60581.2025.10980745
Rights:
http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
Accession Number:
edsbas.7754800A
Database:
BASE

Weitere Informationen

International audience ; Convolutional neural networks are the de facto standard for 3D multi-organ segmentation but still exhibit significant limitations, especially regarding their computational cost, with high running time and often prohibitive memory footprint for large 3D volumes. To overcome these limitations, we propose to replace the image voxel grid with a more compact point cloud representation. Recently, in the field of 3D object reconstruction, networks learning implicit functions from an input point cloud, such as Convolutional Occupancy Networks (ConvONet), have proven their good surface representation capabilities. We therefore propose SCONet (Segmentation Convolutional Occupancy Network), a lightweight ConvONet-based network adapted to the specific task of multi-organ segmentation. SCONet takes as input a point cloud extracted from the original volume with a standard contour detection algorithm, and enriches it with geometric and photometric features. Thanks to its ability to query per organ occupancy probabilities for any point in space, SCONet can be used to predict a multi-organ segmentation map at arbitrary resolution. We evaluate our method on an abdominal CT image dataset and compare its performances with those of discrete and implicit baselines. Our implementation is available at https://github.com/maylis-j/SCONet.