Treffer: A technique for overlapping computation and communication for block recursive algorithms
Weitere Informationen
This paper presents a design methodology for developing efficient distributed-memory parallel programs for block recursive algorithms such as the fast Fourier transform (FFT) and bitonic sort. This design methodology is specifically suited for most modern supercomputers having a distributed-memory architecture with circuit-switched or wormhole routed mesh or hypercube interconnection network. A mathematical framework based on the tensor product and other matrix operations is used for representing algorithms. Communication-efficient implementations with effectively overlapped computation and communication are achieved by manipulating the mathematical representation using the tensor product algebra. Performance results for FFT programs on the