Treffer: Using psychometric theories and web2.0 technologies to facilitate intelligent tutoring system ; 智慧型學習引導系統-使用心理評量理論及Web 2.0技術

Title:
Using psychometric theories and web2.0 technologies to facilitate intelligent tutoring system ; 智慧型學習引導系統-使用心理評量理論及Web 2.0技術
Contributors:
淡江大學資訊工程學系博士班, 施國琛, Shih, Timothy K.
Publication Year:
2008
Collection:
Tamkang University Institutional Repository (TKUIR) / 淡江大學機構典藏
Document Type:
other/unknown material
File Description:
143 bytes; application/octet-stream
Language:
English
Relation:
Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., et al. (2001). A Taxonomy for Learning, Teaching, and Assessing — A Revision of Bloom''s Taxonomy of Educational Objectives. Addison Wesley Longman, Inc. Aroyo, L., Graesser, A., & Johnson, L. (2007). Intelligent Educational Systems of the Present and Future. IEEE Intelligent Systems , 22 (4), 20-21. Bloom, B. S. (1956). Taxonomy of Educational Objectives: The Classification of Educational Goals. Susan Fauer Company, Inc. Chen, D.-J., Lai, A.-F., & Liu, I.-C. (2005). The Design and Implementation of a Diagnostic Test System Based on the Enhanced S-P Model. Journal of Information Science and Engineering , 21, pp. 1007-1030. Chen, S.-B., Hsu, Y.-C., Hu, C., & Lin, Y.-c. (2006). Applying S-P Chart Analysis as Feedback Mechanism in SCORM Assessment Material. Proceeding of International Plugfest II. Tamsui, Taiwan: Tamkang University. Cohen, R. j., Montague, P., Nathanson, L. S., & Swerdlik, M. E. (1988). Psychological testing: An introduction to tests and measurement. Mountain View: Mayfield. Common Cartridge Alliance. (2007). IMS Common Cartridge. Retrieved 6 6, 2008, from IMS Global Learning Consortium: http://www.imsglobal.org/commoncartridge.html Conklin, J. (1987). Hypertext: An Introduction and Survey. IEEE Computer , 20 (9), pp. 17-41. Consortium, T. E. (2002). Elvira: An environment for creating and using probabilistic graphical models. Proceeding of 1st Eur. Workshop PGM, (pp. 1–11). Cuenca, Spain. DaiC.Y., ChengJ.K., SungJ.K., & HoC.P. (2005). An Applied Model of SP Chart in the Technological and Vocational Schools Entrance Examination, Redesigning Pedagogy: Research, Policy, Practice. Proceeding of International Conference on Education. Singapore: Nanyang Technological University. Dashboard. (2006). Retrieved from Apple Inc.: http://www.apple.com/macosx/leopard/dashboard.html Ebel, R. L., & Frisbie, D. A. (1991). Essentials of educational measurement (5th edition). Englewood Cliffs: Prentice-Hall. Farance, F., & Tonkel, J. (2001). Draft Standard for Learning Technologies. Learning Technology Systems Architecture (LTSA). IEEE Inc. Garret, J. J. (2005, 2 18). Ajax: A New Approach to Web Applications. Retrieved 6 1, 2008, from Adaptive Path: http://www.adaptivepath.com/publications/essays/archives/000385.php Goh, G. M., & Quek, C. (2007, 1). EpiList: An Intelligent Tutoring System Shell for Implicit Development of Generic Cognitive Skills That Support Bottom-Up Knowledge Construction. IEEE Transactions on Systems, Man and Cybernetics , 1 (37), pp. 58-71. Gullikson, H. (1987). Theory of mental tests. Hillsdale: Lawrence Erlbaum Associates. Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and applications. Boston: Kluwer-Nijhoff. Hinchcliffe, D. (n.d.). The State of Web 2.0. Retrieved from http://web2.wsj2.com/the_state_of_web_20.htm Ho, R.-G., & Yen, Y.-C. (2005, 5). Design and Evaluation of an XML-Based Platform-Independent Computerized Adaptive Testing System. IEEE TRANSACTIONS ON EDUCATION , 48 (2). Hwang, G.-J., Yin, P.-Y., Hwang, G.-H., & Chan, Y. (2005). A Novel Approach for Composing Test Sheets from Large Item Banks to Meet Multiple Assessment Criteria. Proceedings of the Fifth IEEE International Conference on Advanced Learning Technologies. HwangGwo-Jen. (2003). A Test-Sheet-Generating Algorithm for Multiple Assessment Requirements. IEEE Transactions on Education, 46 (3). Kazi, S. A. (2004). A Conceptual Framework for Web-based Intelligent Learning Environments using SCORM-2004. Proceedings of the IEEE International Conference on Advanced Learning Technologies. Kelly, T. L. (1939). The Selection of Upper and Lower Groups for the Validation of Test Items. Journal of Educational Psychology , 30, pp. 17-24. Khan, B. H. (2001). Web-based Training. Englewood Cliffs, NJ: Educational Technology Publications. Kirschner, P. A., & Paas, F. G. (2001). Web-enhanced Higher Education: a Tower of Babel. Computer in Human Behavior , 347-353. Kolb, D. (1984). Experiential Learning. Englewood Cliffs, NJ : Prentice-Hall. Lacave, C., Luque, M., & Diez, F. (2007, 8). Explanation of Bayesian Networks and Influence Diagrams in Elvira. IEEE Transactions on Systems, Man, and Cybernetics , 37 (4), pp. 952-965. Leung, E., & Li, Q. (2007, 11). An Experimental Study of a Personalized Learning Environment Through Open-Source Software Tools. IEEE Transactions on Education , 50 (4), pp. 331-337. Lin, N. H., Chang, W., Shih, T. K., & Keh, H. (2005). Courseware Development Using Influence Diagram Supporting e-Learning Specification. Journal of Information Science and Engineering , 21 (5), pp. 985-1005. Lytras, M. (2002). E-learning Pedagogy: the reveal of value adding learning processes. Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education (pp. 1826-1830). Chesapeake: AACE. Michell, J. (1997). Quantitative science and the definition of measurement in psychology. British Journal of Psychology . Mitrovic, A., Martin, B., & Suraweera, P. (2007). Intelligent Tutors for All: The Constraint-Based Approach. IEEE Intelligent Systems , 38-45. Murray, T., Shen, T., Piemonte, J., Condit, C., & Tibedau, J. (2000). Adaptively for conceptual and narrative flow in hyper books: The Meta-link system, Adaptive Hypermedia and Adaptive Web-based system. Lecture Notes on Computer Science , 1892, pp. 155-166. PaulsenM.F. (2003). Online education and learning management systems: global e-learning in a Scandinavian perspective. Information Research, 9 (2), 337. Sato, T. (1985). Introduction to S-P Curve Theory Analysis and Evaluation. Tokyo, Japan: Meiji Tosho. Sato, T. (1980). The S-P Chart and the Caution Index. Tokyo, Japan: Nippon Electric Co., Ltd. SatoT. (1975). The Construction and Interpretation of the S-P Table-Instructional Analysis and Learning Diagnosis. Tokyo, Japan, Meiji Tosho. Shih, T. K., Lin, N. H., & Chang, H.-P. (2003). An Intelligent E-Learning System with Authoring and Assessment Mechanism. Proceeding of the17th International Conference on Advanced Information Networking and Applications, (pp. 782-787). Simsek, H., & Akpmar, Y. (2005). Overcoming Scormification Difficulties in Implementing a Learning Content Management System. Proceeding of ITHET 6th Annual International Conference. TsirigaVictoria, & VirvouMaria. (2003). Initializing Student Models in Web-based ITSs: a Generic Approach. Proceedings of the The 3rd IEEE International Conference on Advanced Learning Technologies. Weber, G. (1999). Adaptive learning systems in the World Wide Web. Proceeding of Seventh International Conference of User Modeling , pp. 371-377. Yahoo! Widgets. (2006). Retrieved 6 1, 2008, from Yahoo!: http://widgets.yahoo.com/ Yamanoi, K. (2007). The preparation of the S-P Table. Retrieved 6 6, 2008, from http://www.kasei.ac.jp/cs/Yamanoi/Program/sphyo/index-e.html Yu, M. (2002). Educational Assessment and Evaluation. Taiwan: The Profile of Psychological Publishing Co., Ltd.; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/35104; https://tkuir.lib.tku.edu.tw/dspace/bitstream/987654321/35104/1/
Accession Number:
edsbas.89BB8252
Database:
BASE

Weitere Informationen

博士 ; 本研究利用ADL SCORM及IMS QTI之國際標準作為智慧型學習引導系統的整合基準,加入Bloom教育分類理論、IRT試題反映理論、SP table分析以及Kolb學習型態等多項理論之輔助,提出一個利用AJAX及Web Service技術的智慧型學習引導系統;由課程編輯者製作數位學習教材及試題開始、學習者於學習管理平台(Learning Management System)及測驗管理平台(Assessment Management System)上進行學習及測驗活動,並依據傳統測驗理論收集試題屬性,進而利用測驗之方式來分析受測者的學習能力,藉由資訊科技與多種測驗教育理論之結合,以提供教學設計者以及學習者完善且具有可重複利用之整合式學習環境。本研究針對教育與測驗理論融入資訊科技,透過傳統測驗中選擇題的試題分析與選項分析,提供基礎的試題資訊支援教師教學與測驗。另外一方面,搭配SP Chart分析試題分析與學習者分析,提供教師關於學習者類型的資訊與試題分析類型;提供學習者關於學習者的學習建議。搭配修定版Bloom認知分類,運用兩個向度,知識向度與認知向度。學習者測驗後與學習階段對於學習內容的認知向度與之事向度的瞭解百分比。可以搭配IRT估計學習者能力機制,輔助瞭解學習者學習能力。原先IRT學習者能力無法提供學習者學習到哪些內容,透過修定版Bloom認知分類,可清楚提供教師與學習者學習的狀態。除此之外,以搜尋到的學習者能力資訊與學習知識程度,利用二參數分群(Clustering)技術協助教學過程中的課輔分群、學習風格分群、學習能力分群。 ; This study bases on the international standards - ADL SCORM (Sharable Content Object Reference Model 2004 4th Edition) and IMS QTI (Question and Test Interoperability v2.0) to construct an interoperability learning environment. Content designers construct learning objects and items with authoring tool, learners keep their learning activities with Learning Management System (LMS), Assessment Management System (AMS), and back end Repository mechanism. We use AJAX (Asynchronous JavaScript and XML) and other Web 2.0 concepts to facilitate our system as a RIA (Rich Internet Application). This study focus on intelligent tutoring and evaluating functions in e-learning platform. In order to integrate learning technology, education theories and information technology, our system supports the following education and test theorems. 1) Student-Problem Chart analysis test items for teachers and learning suggestions to learners. 2) Revised Bloom’s taxonomy has two cognition dimensions which are cognitive process dimension and knowledge dimension. The knowledge dimension is composed of four levels that are defined as factual, conceptual, procedural, and meta-cognitive. The cognitive process dimension consists of six levels that are defined as remember, understand, apply, analyze, evaluate, and create. 3) Item Response Theory applied the discrimination ...