Treffer: High-order maximum-entropy collocation methods
0-04-578252-0
Weitere Informationen
© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ ; This paper considers the approximation of partial differential equations with a point collocation framework based on high-order local maximum-entropy schemes (HOLMES). In this approach, smooth basis functions are computed through an optimization procedure and the strong form of the problem is directly imposed at the collocation points, reducing significantly the computational times with respect to the Galerkin formulation. Furthermore, such a method is truly meshfree, since no background integration grid is necessary. The validity of HOLMES collocation is verified with supportive numerical examples, where the expected convergence rates are obtained. This includes the approximation of PDEs on domains bounded by implicit and explicit (NURBS) curves, illustrating a direct integration between geometric modeling and numerical analysis. ; Peer Reviewed ; Postprint (author's final draft)