Treffer: Sparse Aggregation Framework for Optical Flow Estimation
Title:
Sparse Aggregation Framework for Optical Flow Estimation
Authors:
Contributors:
Space-timE RePresentation, Imaging and cellular dynamics of molecular COmplexes (SERPICO), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Source:
Scale Space and Variational Methods in Computer Vision ; https://inria.hal.science/hal-01138012 ; Scale Space and Variational Methods in Computer Vision, May 2015, Lège Cap Ferret, France ; http://link.springer.com/chapter/10.1007%2F978-3-319-18461-6_26
Publisher Information:
HAL CCSD
Publication Year:
2015
Collection:
Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
Subject Terms:
Subject Geographic:
Document Type:
Konferenz
conference object
Language:
English
Relation:
Availability:
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edsbas.907E3CF7
Database:
BASE
Weitere Informationen
International audience ; We propose a sparse aggregation framework for optical flow estimation to overcome the limitations of variational methods introduced by coarse-to-fine strategies. The idea is to compute parametric motion candidates estimated in overlapping square windows of variable size taken in the semi-local neighborhood of a given point. In the second step, a sparse representation and an optimization procedure in the continuous setting are proposed to compute a motion vector close to motion candidates for each pixel. We demonstrate the feasibility and performance of our two-step approach on image pairs and compare its performances with competitive methods on the Middlebury benchmark.