Treffer: A note on flips in diagonal rectangulations

Title:
A note on flips in diagonal rectangulations
Contributors:
Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. CGA - Computational Geometry and Applications
Publisher Information:
Chapman & Hall/CRC
Publication Year:
2018
Collection:
Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge
Document Type:
Fachzeitschrift article in journal/newspaper
File Description:
22 p.; application/pdf
Language:
English
Relation:
https://dmtcs.episciences.org/paper/view/id/4943; info:eu-repo/grantAgreement/MINECO//MTM2015-63791-R/ES/GRAFOS Y GEOMETRIA: INTERACCIONES Y APLICACIONES/; https://arxiv.org/pdf/1712.07919.pdf; http://hdl.handle.net/2117/125529
Rights:
Open Access
Accession Number:
edsbas.9921EBDA
Database:
BASE

Weitere Informationen

Rectangulations are partitions of a square into axis-aligned rectangles. A number of results provide bijections between combinatorial equivalence classes of rectangulations and families of pattern-avoiding permutations. Other results deal with local changes involving a single edge of a rectangulation, referred to as flips, edge rotations, or edge pivoting. Such operations induce a graph on equivalence classes of rectangulations, related to so-called flip graphs on triangulations and other families of geometric partitions. In this note, we consider a family of flip operations on the equivalence classes of diagonal rectangulations, and their interpretation as transpositions in the associated Baxter permutations, avoiding the vincular patterns { 3{14}2, 2{41}3 }. This complements results from Law and Reading (JCTA, 2012) and provides a complete characterization of flip operations on diagonal rectangulations, in both geometric and combinatorial terms. ; Peer Reviewed ; Postprint (author's final draft)