Treffer: Constrained variable clustering and the best basis problem in functional data analysis
Title:
Constrained variable clustering and the best basis problem in functional data analysis
Authors:
Contributors:
Laboratoire Traitement et Communication de l'Information (LTCI), Télécom ParisTech-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS), Usage-centered design, analysis and improvement of information systems (AxIS), Centre Inria d'Université Côte d'Azur, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria), Bernard Fichet, Domenico Piccolo, Rosanna Verde and Maurizio Vichi
Source:
Classification and Multivariate Analysis for Complex Data Structures ; https://hal.science/hal-00656675 ; Bernard Fichet, Domenico Piccolo, Rosanna Verde and Maurizio Vichi. Classification and Multivariate Analysis for Complex Data Structures, Springer Berlin Heidelberg, pp.435-444, 2011, Studies in Classification, Data Analysis, and Knowledge Organization, ⟨10.1007/978-3-642-13312-1_46⟩
Publisher Information:
CCSD
Springer Berlin Heidelberg
Springer Berlin Heidelberg
Publication Year:
2011
Collection:
HAL Université Côte d'Azur
Subject Terms:
Document Type:
Buch
book part
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/arxiv/1201.0959; ARXIV: 1201.0959
DOI:
10.1007/978-3-642-13312-1_46
Availability:
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edsbas.B460243F
Database:
BASE
Weitere Informationen
International audience ; Functional data analysis involves data described by regular functions rather than by a finite number of real valued variables. While some robust data analysis methods can be applied directly to the very high dimensional vectors obtained from a fine grid sampling of functional data, all methods benefit from a prior simplification of the functions that reduces the redundancy induced by the regularity. In this paper we propose to use a clustering approach that targets variables rather than individual to design a piecewise constant representation of a set of functions. The contiguity constraint induced by the functional nature of the variables allows a polynomial complexity algorithm to give the optimal solution.