Treffer: Bilgisayarlı görme esaslı değişken oranlı bir alev makinası için görüntü alma sisteminin optimizasyonu ; Optimization of image acquisition system using computer vision for a variable rate flame weeder
Weitere Informationen
Bu çalışmanın amacı, yabancı ot kontrolü için kullanılan bir alev makinesi prototipine entegre edilecek görüntü işleme esaslı, yapay aydınlatmalı bir görüntü alma sistemi geliştirmektir. Ayrıca, düşük maliyetli bir gömülü devre ve kamera (Raspberry Pi 3) kullanan görüntü işleme sisteminin yapay aydınlatmalı görüntü alma odacığının gerekli işletme parametrelerini belirlemek hedeflenmiştir. Görüntü işleme algoritmalarının geliştirilmesi ve sayısal analiz aşamalarında OpenCV açık kaynak kodlu görüntü işleme kütüphanesi ve Python programlama dili kullanılmıştır. Sistem geliştirme aşamalarında geliç (SorghumhalepenseL.), pıtrak (Xanthiumstrumarium L.), tarla sarmaşığı (Convolvulusarvensis L.) ve köygöçüren (Cirsiumarvense) otlarının bulunduğu bir arazi koşulunda yabancı otların görüntüleri alınmıştır. Dış ortama açık ve yapay aydınlatma sistemiyle alınan görüntülerin histogramları karşılaştırılmıştır. Yabancı ot piksel dağılımları incelenerek ikilileştirme için uygun eşik değerleri belirlenmiştir. Sonuç olarak, geliştirilen algoritma 20 fps’ye yakın hızlarda hareketli görüntüler üzerinde çalıştırılarak anlık yabancı ot oranlarının belirlenebileceği bulunmuştur. Geliştirilen sistem kullanılarak test görüntülerinde yabancı ot piksel oranı ’lik bir başarı ile hesaplanabilmiştir. ; The objective of this study was to develop an image acquisition system, based on artificial lighting and image processing, which could be integrated with a prototype weed flaming machine used for weed control. Additionally, it was aimed to determine the operational parameters of the image acquisition chamber of the artificially illuminated image processing system using a low cost embedded circuit and a camera (Raspberry Pi 3). OpenCV image processing library and Python programming language were used in the development stages of image processing algorithms and numerical analysis. During the system development steps, images of weeds were taken in a field condition with a mixture of various weed species, including Sorghum halepense L., Xanthium ...