Treffer: Multi-Resource List Scheduling of Moldable Parallel Jobs under Precedence Constraints

Title:
Multi-Resource List Scheduling of Moldable Parallel Jobs under Precedence Constraints
Contributors:
Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Optimisation des ressources : modèles, algorithmes et ordonnancement (ROMA), Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon), Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria de Lyon, Institut National de Recherche en Informatique et en Automatique (Inria), Vanderbilt University Nashville
Source:
ICPP 2021 - Proceedings of the 50th International Conference on Parallel Processing ; https://inria.hal.science/hal-04034332 ; ICPP 2021 - Proceedings of the 50th International Conference on Parallel Processing, Aug 2021, Chicago, United States. ⟨10.1145/3472456.3472487⟩
Publisher Information:
CCSD
ACM
Publication Year:
2021
Collection:
HAL Lyon 1 (University Claude Bernard Lyon 1)
Subject Geographic:
Document Type:
Konferenz conference object
Language:
English
DOI:
10.1145/3472456.3472487
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edsbas.D2CE9048
Database:
BASE

Weitere Informationen

International audience ; The scheduling literature has traditionally focused on a single type of resource (e.g., computing nodes). However, scientific applications in modern High-Performance Computing (HPC) systems process large amounts of data, hence have diverse requirements on different types of resources (e.g., cores, cache, memory, I/O). All of these resources could potentially be exploited by the runtime scheduler to improve the application performance. In this paper, we study multi-resource scheduling to minimize the makespan of computational workflows comprised of parallel jobs subject to precedence constraints. The jobs are assumed to be moldable, allowing the scheduler to flexibly select a variable set of resources before execution. We propose a multiresource, list-based scheduling algorithm, and prove that, on a system with d types of schedulable resources, our algorithm achieves an approximation ratio of 1.619d + 2.545 √ d + 1 for any d, and a ratio of d + O(3 √ d 2) for large d. We also present improved results for independent jobs and for jobs with special precedence constraints (e.g., series-parallel graphs and trees). Finally, we prove a lower bound of d on the approximation ratio of any list scheduling scheme with local priority considerations. To the best of our knowledge, these are the first approximation results for moldable workflows with multiple resource requirements.