Treffer: Simulation of the operating process of a spark ignition engine powered by carbon-free fuel ; Моделирование рабочего процесса двигателя с искровым зажиганием, питаемого безуглеродным топливом

Title:
Simulation of the operating process of a spark ignition engine powered by carbon-free fuel ; Моделирование рабочего процесса двигателя с искровым зажиганием, питаемого безуглеродным топливом
Contributors:
Финансовая поддержка отсутствует
Source:
Avtomobil'. Doroga. Infrastruktura.; № 4(38) (2023); 2 ; Автомобиль. Дорога. Инфраструктура. = Avtomobil'. Doroga. Infrastruktura.; № 4(38) (2023); 2 ; 2409-7217
Publisher Information:
МАДИ
Publication Year:
2023
Collection:
Avtomobil'. Doroga. Infrastruktura (E-Journal) / Автомобиль. Дорога. Инфраструктура
Document Type:
Fachzeitschrift article in journal/newspaper
File Description:
application/pdf
Language:
Russian
Relation:
https://www.adi-madi.ru/madi/article/view/1294/pdf_751; https://www.adi-madi.ru/madi/article/downloadSuppFile/1294/1399; Технология катализаторов / В. А. Таранушич, А. П. Савостьянов, С. И. Сулима [и др.]. – Новочеркасск : Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова, 2012. – 100 с. – EDN VLUSBD.; Легасов, В.А. Водородная энергетика / В.А. Легасов // Природа. – 1977. – № 3. – С. 3-17.; Двигатели внутреннего сгорания: учебник для студентов высших учебных заведений, обучающихся по специальности "Автомобили и автомобильное хозяйство" направления подготовки дипломированных специалистов "Эксплуатация наземного транспорта и транспортного оборудования": в 3 книгах / В. Н. Луканин, К. А. Морозов, А. С. Хачиян [и др.]. Том Книга 1. – Издание 4-е, исправленное. – Москва: Издательство "Высшая Школа", 2010. – 479 с. – ISBN 978-5-06-006200-7. – EDN QMKJWF.; Meulenbelt, J. Ammonia / J. Meulenbelt // Medicine. – 2012. – Vol. 40, no. 2. –P. 94–95. – DOI:10.1016/j.mpmed.2011.11.006.; Sarafraz, M. M. Sustainable three-stage chemical looping ammonia production (3CLAP) process / M. M. Sarafraz, F. C. Christo // Energy Conversion and Management. – 2021. – Vol. 229. – Art. No. 113735. – DOI:10.1016/j.enconman.2020.113735.; Low-temperature auto-ignition characteristics of NH3/diesel binary fuel: Ignition delay time measurement and kinetic analysis / Y. Feng, J. Zhu, Y. Mao, M. Raza, Y. Qian, L. Yu, X. Lu // Fuel. – 2020. – Vol. 281. – Art. No. 118761. – DOI:10.1016/j.fuel.2020.118761.; Frigo, S. Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen / S. Frigo, R. Gentili // International Journal of Hydrogen Energy. – 2013. – Vol. 38(3). – P. 1607-1615. – DOI:10.1016/j.ijhydene.2012.10.114.; Bell, T. E.; Torrente-Murciano, L. H2 Production via Ammonia Decomposition Using Non-Noble Metal Catalysts: A Review / T. E. Bell, L. Torrente-Murciano // Topics in Catalysis. – 2016 – Vol. 59(15-16). – P. 1438-1457. – DOI:10.1007/s11244-016-0653-4.; Ammonia for Hydrogen Storage: Challenges and Opportunities / A. Klerk, C. H. Christensen, J. K. Nørskov, T. Vegge // Journal of Materials Chemistry. – 2008. – Vol. 18(20). – P. 2304-2310. – DOI:10.1039/B720020J.; Ferguson, C. R. Internal combustion engines: applied thermosciences / C. R. Ferguson. – New York : John Wiley & Sons; 2016. – 546 p.; Ryu, K. Performance enhancement of ammonia-fueled engine by using dissociation catalyst for hydrogen generation / K. Ryu, G. E. Zacharakis-Jutz, S.-C. Kong // International Journal of Hydrogen Energy. – 2014. – Vol. 39(5). – P. 2390-2398. – DOI:10.1016/j.ijhydene.2013.11.098.; Ryu, K. Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine / K. Ryu, G. E. Zacharakis-Jutz, S.-C. Kong // Apple Energy. – 2014. – Vol. 116. – P. 206-215. – DOI:10.1016/j.apenergy.2013.11.067.; Cornelius, W. Ammonia as an engine fuel / W. Cornelius, L. W. Huellmantel, H. R. Mitchell // SAE Technical Paper. – 1965. – Art. No. 650052. – DOI:10.4271/650052.; Ammonia as a Spark Ignition Engine Fuel: Theory and Application / E. S. Starkman, H. K. Newhall, R. Sutton, T. Maguire, L. Farbar // SAE Technical Paper. – 1966. – Art. No. 660155. – DOI:10.4271/660155.; Comotti, M. Hydrogen generation system for ammonia-hydrogen fuelled internal combustion engines / M. Comotti, S. Frigo // International Journal of Hydrogen Energy. – 2015. – Vol. 40(33). – P. 10673-10686. – DOI:10.1016/j.ijhydene.2015.06.080.; Ammonia/hydrogen mixtures in an SI-engine: Engine performance and anslysis of a proposed fuel system / C. S. Morch, A. Bjerre, M. P. Gottrup, S. C. Sorenson, J. Schramm // Fuel. – 2011. – Vol. 90(2). – P. 854-864. – DOI:10.1016/j.fuel.2010.09.042.; A Hybrid Vehicle Powered by Hydrogen and Ammonia / G. Pozzana, N. Bonfanti, S. Frigo, N. Doveri et al. // SAE Technical Paper. – 2012. – Art. No. 2012-32-0085. – DOI:10.4271/2012-32-0085.; Performances and pollutant emissions of spark ignition engine using direct injection for blends of ethanol/ammonia and pure ammonia / R. Pelé, P. Brequigny, J. Bellettre, C. Mounaïm-Rousselle // International Journal of Engine Research. – 2023. – doi:10.1177/14680874231170661.
Accession Number:
edsbas.D653246D
Database:
BASE

Weitere Informationen

The results of mathematical modeling of the operating process of a spark-ignition engine when running on gasoline and two carbon-free fuels: hydrogen and ammonia are presented. To carry out the computational study, a software package developed at MADI was used. The heat release process in the engine combustion chamber was modeled using the formula proposed by Wiebe. For each of the fuels under study, the index m of the Wiebe formula was determined. The choice of the value of m was carried out based on the condition of coincidence of experimental and calculated data on the maximum cycle pressure and the highest rate of pressure increase. At the second stage of computational studies, the impact on the performance of a spark-ignition engine from switching to hydrogen and ammonia was assessed. The composition of the mixture in this study was assumed to be stoichiometric. With the transition to hydrogen, the maximum value of the heat release rate increases by 17.5% compared to gasoline, while with ammonia it increases by 1.6%. Engine operation on ammonia has the highest hourly fuel consumption, which is 2.6 times higher than that of gasoline and 6.2 times higher than that of hydrogen. ; В статье представлены результаты математического моделирования рабочего процесса двигателя с искровым зажиганием при его работе на бензине и двух топливах, не содержащих углерод: водород и аммиак. Для проведения расчетного исследования применен программный комплекс, разработанный в МАДИ. Процесс тепловыделения в камере сгорания двигателя описывается моделью, предложенной Вибе. Для каждого из исследуемых топлив был определен показатель m кривой тепловыделения. Выбор величины m проводился из условия совпадения экспериментальных и расчетных данных по максимальному давлению цикла и наибольшей скорости нарастания давления. На втором этапе расчетных исследований оценивалось влияния на показатели рабочего процесса двигателя с искровым зажиганием от перехода на водород и аммиак. Состав смеси в данном исследовании принимался стехиометрическим. ...