Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Macrocanonical Models for Texture Synthesis

Title:
Macrocanonical Models for Texture Synthesis
Contributors:
Centre de Mathématiques et de Leurs Applications (CMLA), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS), Institut Denis Poisson (IDP), Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Bordeaux (IMB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Source:
Scale Space and Variational Methods in Computer Vision. SSVM 2019 ; https://hal.science/hal-02093364 ; Scale Space and Variational Methods in Computer Vision. SSVM 2019, Jun 2019, Hofgeismar, Germany. ⟨10.1007/978-3-030-22368-7_2⟩ ; https://ssvm2019.mic.uni-luebeck.de/index.php?id=46
Publisher Information:
CCSD
Publication Year:
2019
Collection:
Université François-Rabelais de Tours: HAL
Subject Geographic:
Document Type:
Konferenz conference object
Language:
English
DOI:
10.1007/978-3-030-22368-7_2
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edsbas.D821E8C3
Database:
BASE

Weitere Informationen

International audience ; In this article we consider macrocanonical models for texture synthesis. In these models samples are generated given an input texture image and a set of features which should be matched in expectation. It is known that if the images are quantized, macrocanonical models are given by Gibbs measures, using the maximum entropy principle. We study conditions under which this result extends to real-valued images. If these conditions hold, finding a macrocanonical model amounts to minimizing a convex function and sampling from an associated Gibbs measure. We analyze an algorithm which alternates between sampling and minimizing. We present experiments with neural network features and study the drawbacks and advantages of using this sampling scheme.