Teeranush Suebcharoen, Raweerote Suparatulatorn, Tanadon Chaobankoh, Khwanchai Kunwai, & Thanasak Mouktonglang. (2024). An Inertial Relaxed CQ Algorithm with Two Adaptive Step Sizes and Its Application for Signal Recovery. Mathematics, Vol 12, Iss 15, P 2406 (2024. https://doi.org/10.3390/math12152406
ISO-690 (author-date, English)TEERANUSH SUEBCHAROEN, RAWEEROTE SUPARATULATORN, TANADON CHAOBANKOH, KHWANCHAI KUNWAI und THANASAK MOUKTONGLANG, 2024. An Inertial Relaxed CQ Algorithm with Two Adaptive Step Sizes and Its Application for Signal Recovery. Mathematics, Vol 12, Iss 15, p 2406 (2024. 1 Januar 2024. DOI 10.3390/math12152406.
Modern Language Association 9th editionTeeranush Suebcharoen, Raweerote Suparatulatorn, Tanadon Chaobankoh, Khwanchai Kunwai, und Thanasak Mouktonglang. „An Inertial Relaxed CQ Algorithm With Two Adaptive Step Sizes and Its Application for Signal Recovery“. Mathematics, Vol 12, Iss 15, P 2406 (2024, Januar 2024, https://doi.org/10.3390/math12152406.
Mohr Siebeck - Recht (Deutsch - Österreich)Teeranush Suebcharoen/Raweerote Suparatulatorn/Tanadon Chaobankoh/Khwanchai Kunwai/Thanasak Mouktonglang: An Inertial Relaxed CQ Algorithm with Two Adaptive Step Sizes and Its Application for Signal Recovery, Mathematics, Vol 12, Iss 15, p 2406 (2024 2024,
Emerald - HarvardTeeranush Suebcharoen, Raweerote Suparatulatorn, Tanadon Chaobankoh, Khwanchai Kunwai und Thanasak Mouktonglang. (2024), „An Inertial Relaxed CQ Algorithm with Two Adaptive Step Sizes and Its Application for Signal Recovery“, Mathematics, Vol 12, Iss 15, P 2406 (2024, verfügbar unter:https://doi.org/10.3390/math12152406.