American Psychological Association 6th edition

Teeranush Suebcharoen, Raweerote Suparatulatorn, Tanadon Chaobankoh, Khwanchai Kunwai, & Thanasak Mouktonglang. (2024). An Inertial Relaxed CQ Algorithm with Two Adaptive Step Sizes and Its Application for Signal Recovery. Mathematics, Vol 12, Iss 15, P 2406 (2024. https://doi.org/10.3390/math12152406

ISO-690 (author-date, English)

TEERANUSH SUEBCHAROEN, RAWEEROTE SUPARATULATORN, TANADON CHAOBANKOH, KHWANCHAI KUNWAI und THANASAK MOUKTONGLANG, 2024. An Inertial Relaxed CQ Algorithm with Two Adaptive Step Sizes and Its Application for Signal Recovery. Mathematics, Vol 12, Iss 15, p 2406 (2024. 1 Januar 2024. DOI 10.3390/math12152406.

Modern Language Association 9th edition

Teeranush Suebcharoen, Raweerote Suparatulatorn, Tanadon Chaobankoh, Khwanchai Kunwai, und Thanasak Mouktonglang. „An Inertial Relaxed CQ Algorithm With Two Adaptive Step Sizes and Its Application for Signal Recovery“. Mathematics, Vol 12, Iss 15, P 2406 (2024, Januar 2024, https://doi.org/10.3390/math12152406.

Mohr Siebeck - Recht (Deutsch - Österreich)

Teeranush Suebcharoen/Raweerote Suparatulatorn/Tanadon Chaobankoh/Khwanchai Kunwai/Thanasak Mouktonglang: An Inertial Relaxed CQ Algorithm with Two Adaptive Step Sizes and Its Application for Signal Recovery, Mathematics, Vol 12, Iss 15, p 2406 (2024 2024,

Emerald - Harvard

Teeranush Suebcharoen, Raweerote Suparatulatorn, Tanadon Chaobankoh, Khwanchai Kunwai und Thanasak Mouktonglang. (2024), „An Inertial Relaxed CQ Algorithm with Two Adaptive Step Sizes and Its Application for Signal Recovery“, Mathematics, Vol 12, Iss 15, P 2406 (2024, verfügbar unter:https://doi.org/10.3390/math12152406.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.