Treffer: Multi-camera 3D modeling system to digitize human head and body

Title:
Multi-camera 3D modeling system to digitize human head and body
Source:
Three-dimensional image capture and applications IV (San Jose CA, 24-25 January 2001)SPIE proceedings series. :40-47
Publisher Information:
Bellingham WA: SPIE, 2001.
Publication Year:
2001
Physical Description:
print, 12 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Hypermedia Research Center, SANYO Electric Co., Ltd., Bunkyo-ku, Tokyo 113-8434, Japan
Rights:
Copyright 2001 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Biophysics of tissues, organs and organisms
Accession Number:
edscal.1016327
Database:
PASCAL Archive

Weitere Informationen

A multi-camera 3D modeling system to digitize a human head and body is presented in this paper. The main features of this system are as follows: 1) Fast capturing: Both of texture images and pattern images can be taken within a few seconds using multiple digital still cameras which are set around the target human. Slide projectors are also set to provide a color line patterned light on the target for pattern image capturing, 2) Realistic Shape and Texture: The whole shape and photorealistic textures of the human head including hair can be digitized at a time on a personal computer, and 3) Hybrid Algorithm: Our modeling algorithm is based on a hybrid method where the Shape-from-Silhouette technique and the Active-Stereo technique are combined. In the first step, the rough shape of the target is estimated in a voxel space using our Extended Shape-from-Silhouette method. In the next step, the shape is refined based on the depth-map data that is calculated using a multi-camera active stereo method. This combination makes up for the shortcomings of each method. Our system has been applied to the digitizing several Japanese people using sixteen cameras for texture image capturing and twelve cameras and two projectors for pattern image capturing. Its capturing time is approximately three seconds and calculation time is about 15-20 minutes on a personal computer with the Pentium-III processor (600MHz) and 512MB memory to digitize the whole shape as well as the texture of the human head and body.