Result: Examination of the Ge-Sb-Te-system for rewritable optical data storage by a composition-spread approach

Title:
Examination of the Ge-Sb-Te-system for rewritable optical data storage by a composition-spread approach
Source:
Combinatorial and composition spread techniques in materials and device development II (San Jose CA, 22-23, 25 January 2001)SPIE proceedings series. :51-58
Publisher Information:
Bellingham WA: SPIE, 2001.
Publication Year:
2001
Physical Description:
print, 13 ref
Original Material:
INIST-CNRS
Subject Terms:
Electronics, Electronique, Optics, Optique, Condensed state physics, Physique de l'état condensé, Physics, Physique, Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Electronique, Electronics, Electronique des semiconducteurs. Microélectronique. Optoélectronique. Dispositifs à l'état solide, Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices, Interfaces, Fabrication microélectronique (technologie des matériaux et des surfaces), Microelectronic fabrication (materials and surfaces technology), Analyse sonde électronique, Electron probe analysis, Analyse structurale, Structural analysis, Análisis estructural, Antimoine, Antimony, Antimonio, Changement phase, Phase change, Cambio fase, Chimie combinatoire, Combinatorial chemistry, Química combinatoria, Composition chimique, Chemical composition, Composición química, Diffraction RX, X ray diffraction, Difracción RX, Germanium, Germanio, Magnétron, Magnetron, Magnetrón, Matériau changement phase, Phase change materials, Méthode combinatoire, Combinatorial method, Método combinatorio, Pulvérisation irradiation, Sputtering, Pulverización irradiación, Résultat expérimental, Experimental result, Resultado experimental, Science matériau, Material science, Ciencia material, Stockage donnée, Data storage, Almacenamiento datos, Stockage optique, Optical storage, Almacenamiento óptico, Structure interface, Interface structure, Estructura interfaz, Tellure, Tellurium, Teluro
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Lehrstuhl für Theoretische Hüttenkunde, RWTH Aachen, 52056 Aachen, Germany
Institut für Halbleitertechnik II, RWTH Aachen, 52056 Aachen, Germany
Rights:
Copyright 2001 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Electronics
Accession Number:
edscal.1020020
Database:
PASCAL Archive

Further Information

Because of its fast reversible phase change between a crystalline and an amorphous phase and a corresponding change in optical properties, Ge-Sb-Te alloys are well known as materials for phase change optical data storage [1]. Especially the stoichiometric Ge2Sb2Te5 of the GeTe-Sb2Te3 pseudobinary line is suited for this purpose and already commercially used [2]. Nevertheless, the physical principles of this technique are not yet completely understood. In the presented paper a composition-spread approach was used to deposit Ge-Sb-Te films with compositions around the ternary phase Ge2Sb2Te5. The deposition took place in a UHV sputtering chamber using three magnetron cathodes equipped with pure Ge-, Sb- and Te-targets, respectively, for film deposition. Films were deposited on Si-wafers as well as on Si-Al-SiO2 stacks. The resulting composition-spread was analyzed by EPMA-mappings and GI-XRD with respect to composition and structure. The velocity of the phase change was determined using a static tester. The correlation between film constitution and kinetics of the phase change revealed that the change from the initialized crystalline phase to the amorphous phase could be achieved in about 20 ns for optimized compositions. Even slight deviations from this composition resulted in a strong decrease of the phase change velocity. Structural analysis proved the existence of two crystalline phases with cubic and hexagonal structure in the initialized films.