Result: Maximum a posteriori sequence estimation using Monte Carlo particle filters

Title:
Maximum a posteriori sequence estimation using Monte Carlo particle filters
Source:
Special Issue on Nonlinear Non-Gaussian Models and Related Filtering MethodsAnnals of the Institute of Statistical Mathematics. 53(1):82-96
Publisher Information:
Dordrecht; Tokyo: Kluwer, 2001.
Publication Year:
2001
Physical Description:
print, 25 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Statistiques, Statistics, Inférence paramétrique, Parametric inference, Inférence non paramétrique, Nonparametric inference, Inférence à partir de processus stochastiques; analyse des séries temporelles, Inference from stochastic processes; time series analysis, Autocorrélation, Autocorrelation, Autocorrelación, Autorégression, Autoregression, Autoregresión, Distribution temporelle, Time distribution, Distribución temporal, Distribution échantillonnage, Sampling distribution, Distribución muestreo, Espace état, State space, Espacio estado, Estimation Bayes, Bayes estimation, Estimación Bayes, Estimation a posteriori, A posteriori estimation, Estimación a posteriori, Estimation non linéaire, Non linear estimation, Estimación no lineal, Estimation non paramétrique, Non parametric estimation, Estimación no paramétrica, Estimation paramètre, Parameter estimation, Estimación parámetro, Estimation statistique, Statistical estimation, Estimación estadística, Filtrage optimal, Optimal filtering, Filtrado óptimo, Filtrage, Filtering, Filtrado, Filtre optimal, Optimal filter, Filtro optimal, Lissage, Smoothing, Alisamiento, Modèle non linéaire, Non linear model, Modelo no lineal, Méthode Monte Carlo, Monte Carlo method, Método Monte Carlo, Méthode espace état, State space method, Método espacio estado, Optimisation, Optimization, Optimización, Processus stochastique, Stochastic process, Proceso estocástico, Programmation dynamique, Dynamic programming, Programación dinámica, Prévision statistique, Statistical forecasting, Previsión estadística, Suite mathématique, Sequence(mathematics), Sucesión matemática, Série temporelle, Time series, Serie temporal, Technique programmation, Programmation technique, Técnica programación, Trajectoire optimale, Optimal trajectory, Trayectoria óptima, Filtrage particule, Particle filtering, MAP sequence estimation, Maximum a posteriori sequence estimation, Modèle non gaussien, Non Gaussian model, TVAR model, Time varying autoregression model
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Signal Processing Laboratory, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
Institute of Statistics and Decision Sciences, Duke University, Durham NC 27708-0251, United States
ISSN:
0020-3157
Rights:
Copyright 2001 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.1044103
Database:
PASCAL Archive

Further Information

We develop methods for performing maximum a posteriori (MAP) sequence estimation in non-linear non-Gaussian dynamic models. The methods rely on a particle cloud representation of the filtering distribution which evolves through time using importance sampling and resampling ideas. MAP sequence estimation is then performed using a classical dynamic programming technique applied to the discretised version of the state space. In contrast with standard approaches to the problem which essentially compare only the trajectories generated directly during the filtering stage, our method efficiently computes the optimal trajectory over all combinations of the filtered states. A particular strength of the method is that MAP sequence estimation is performed sequentially in one single forwards pass through the data without the requirement of an additional backward sweep. An application to estimation of a non-linear time series model and to spectral estimation for time-varying autoregressions is described.