Result: Tree data structures for N-body simulation

Title:
Tree data structures for N-body simulation
Authors:
Source:
SIAM journal on computing (Print). 28(6):1923-1940
Publisher Information:
Philadelphia, PA: Society for Industrial and Applied Mathematics, 1999.
Publication Year:
1999
Physical Description:
print, 19 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Terre, ocean, espace, Earth, ocean, space, Astronomie, Astronomy, Astronomie fondamentale et astrophysique. Instrumentation, techniques, et observations astronomiques, Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations, Techniques d'observation et de réduction des données. Simulation et modélisation par ordinateur, Observation and data reduction techniques. Computer modeling and simulation, Méthodes mathématiques et méthodes de simulation sur ordinateur, Mathematical procedures and computer techniques, Algorithme, Algorithms, Amas particule, Particle cluster, Enjambre partícula, Astrophysique, Astrophysics, Décomposition domaine, Domain decomposition, Descomposición dominio, Octarbre, Octrees, Performance, Problème n corps, N-body problems, Simulation, Structure donnée, Data structures, Algorithm Barnes Hut, Barnes Hut algorithm, Algorithme amas particules, Particle cluster algorithm, Décomposition spatiale, Spatial decomposition, Structure donnée spatiale, Spatial data structure
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Science and Engineering, University of Washington, Box 352350, Seattle, WA 98195-2350, United States
ISSN:
0097-5397
Rights:
Copyright 2000 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Astronomy

Computer science; theoretical automation; systems
Accession Number:
edscal.1216139
Database:
PASCAL Archive

Further Information

In this paper, we study data structures for use in N-body simulation. We concentrate on the spatial decomposition tree used in particle-cluster force evaluation algorithms such as the Barnes-Hut algorithm. We prove that a k-d tree is asymptotically inferior to a spatially balanced tree. We show that the worst case complexity of the force evaluation algorithm using a k-d tree is Θ(n log3 n log L) compared with Θ(n log L) for an oct-tree. (L is the separation ratio of the set of points.) We also investigate improving the constant factor of the algorithm and present several methods which improve over the standard oct-tree decomposition. Finally, we consider whether or not the bounding box of a point set should be tight' and show that it is safe to use tight bounding boxes only for binary decompositions. The results are all directly applicable to practical implementations of N-body algorithms.