Treffer: Non-perturbative renormalization group approach to surface growth

Title:
Non-perturbative renormalization group approach to surface growth
Source:
Proceedings of the Europhysics Conference on Computational Physics CCP 1998 Modeling Collective Phenomena in Complex SystemsComputer physics communications. 121-22:358-362
Publisher Information:
Amsterdam: Elsevier Science, 1999.
Publication Year:
1999
Physical Description:
print, 14 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Dipartimento di Fisica and INFM Unit, University of Rome La Sapienza, 00185 Rome, Italy
The Abdus Salam I.C.T.P., Strada Costiera 11, 34100 Trieste, Italy
University of Rome, Tor Vergata, 00133 Rome, Italy
International School for Advanced Studies (SISSA). via Beirut 2-4, Trieste 34014, Italy
ISSN:
0010-4655
Rights:
Copyright 2000 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Metrology

Physics and materials science

Theoretical physics
Accession Number:
edscal.1227766
Database:
PASCAL Archive

Weitere Informationen

We present a recently introduced real space renormalization group (RG) approach to the study of surface growth. The method permits us to obtain the properties of the KPZ strong coupling fixed point, which is not accessible to standard perturbative field theory approaches. Using this method, and with the aid of small Monte Carlo calculations for systems of linear size and 4, we calculate the roughness exponent in dimensions up to d = 8. The results agree with the known numerical values with good accuracy. Furthermore, the method permits us to predict the absence of an upper critical dimension for KPZ contrarily to recent claims. The RG scheme is applied to other growth models in different universality classes and reproduces very well all the observed phenomenology and numerical results. Intended as a sort of finite size scaling method, the new scheme may simplify in some cases from a computational point of view the calculation of scaling exponents of growth processes.