Treffer: Universality in random systems : the case of the 3D random field Ising model

Title:
Universality in random systems : the case of the 3D random field Ising model
Authors:
Source:
Proceedings of the Europhysics Conference on Computational Physics CCP 1998 Modeling Collective Phenomena in Complex SystemsComputer physics communications. 121-22:183-187
Publisher Information:
Amsterdam: Elsevier Science, 1999.
Publication Year:
1999
Physical Description:
print, 12 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris, France
ISSN:
0010-4655
Rights:
Copyright 2000 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Metrology

Theoretical physics
Accession Number:
edscal.1228047
Database:
PASCAL Archive

Weitere Informationen

We study numerically the zero temperature Random Field Ising Model on cubic lattices of various linear sizes 6 ≤ L ≤ 90 in three dimensions with the purpose of verifying the validity of universality for disordered systems. For each random held configuration we vary the ferromagnetic coupling strength J and compute the ground state exactly. We examine the case of different random field probability distributions: Gaussian distribution, zero width bimodal distribution hi = ±1, wide bimodal distribution hi = ±1 + δh (with a Gaussian δh). We also study the case of the randomly-diluted antiferromagnet in a field, which is thought to be in the same universality class. We find that in the infinite volume limit the magnetization is discontinuous in J and we compute the relevant exponent, which, according to finite size scaling, equals 1/ν. We find different values of ν for the different random field distributions, in disagreement with universality.