Result: Combinatorial optimization methods in disordered systems

Title:
Combinatorial optimization methods in disordered systems
Source:
Proceedings of the Europhysics Conference on Computational Physics CCP 1998 Modeling Collective Phenomena in Complex SystemsComputer physics communications. 121-22:199-205
Publisher Information:
Amsterdam: Elsevier Science, 1999.
Publication Year:
1999
Physical Description:
print, 20 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Physics and Astronomy and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824, United States
Lawrence Livermore National Laboratory, 7000 East Ave., P.O. Box 808, Livermore, CA 94550, United States
Instituto de Física, Universidade Federal Fluminense, CEP 24210-340, Niteroi RJ, Brazil
ISSN:
0010-4655
Rights:
Copyright 2000 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Metrology

Physics of condensed state: structure, mechanical and thermal properties

Theoretical physics
Accession Number:
edscal.1228049
Database:
PASCAL Archive

Further Information

We give an overview of the applications of methods from combinatorial optimization to problems in disordered systems. The optimization methods are efficient, for example it is possible to find the ground state of a random field Ising magnet containing one million sites in a couple of minutes on a high end workstation. Combinatorial algorithms for rigidity percolation and minimal energy domain walls in random exchange magnets are even more efficient.