Result: Combinatorial optimization methods in disordered systems
Title:
Combinatorial optimization methods in disordered systems
Authors:
Source:
Proceedings of the Europhysics Conference on Computational Physics CCP 1998 Modeling Collective Phenomena in Complex SystemsComputer physics communications. 121-22:199-205
Publisher Information:
Amsterdam: Elsevier Science, 1999.
Publication Year:
1999
Physical Description:
print, 20 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Theoretical physics, Physique théorique, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Generalites, General, Physique statistique, thermodynamique, et systèmes dynamiques non linéaires, Statistical physics, thermodynamics, and nonlinear dynamical systems, Thermodynamique, Thermodynamics, Transitions de phase: aspects généraux, Phase transitions: general studies, Instruments, appareillage, composants et techniques communs à plusieurs branches de la physique et de l'astronomie, Instruments, apparatus, components and techniques common to several branches of physics and astronomy, Informatique en physique expérimentale, Computers in experimental physics, Modélisation et simulation par ordinateur, Computer modeling and simulation, Etat condense: structure, proprietes mecaniques et thermiques, Condensed matter: structure, mechanical and thermal properties, Structure des liquides et des solides; cristallographie, Structure of solids and liquids; crystallography, Solides désordonnés, Disordered solids, Champ aléatoire, Random field, Campo aleatorio, Etat fondamental, Ground states, Etude théorique, Theoretical study, Modèle Ising, Ising model, Méthode optimisation, Optimization method, Método optimización, Optimisation combinatoire, Combinatorial optimization, Optimización combinatoria, Système désordonné, Disordered systems
Document Type:
Conference
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Physics and Astronomy and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824, United States
Lawrence Livermore National Laboratory, 7000 East Ave., P.O. Box 808, Livermore, CA 94550, United States
Instituto de Física, Universidade Federal Fluminense, CEP 24210-340, Niteroi RJ, Brazil
Lawrence Livermore National Laboratory, 7000 East Ave., P.O. Box 808, Livermore, CA 94550, United States
Instituto de Física, Universidade Federal Fluminense, CEP 24210-340, Niteroi RJ, Brazil
ISSN:
0010-4655
Rights:
Copyright 2000 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Metrology
Physics of condensed state: structure, mechanical and thermal properties
Theoretical physics
Physics of condensed state: structure, mechanical and thermal properties
Theoretical physics
Accession Number:
edscal.1228049
Database:
PASCAL Archive
Further Information
We give an overview of the applications of methods from combinatorial optimization to problems in disordered systems. The optimization methods are efficient, for example it is possible to find the ground state of a random field Ising magnet containing one million sites in a couple of minutes on a high end workstation. Combinatorial algorithms for rigidity percolation and minimal energy domain walls in random exchange magnets are even more efficient.