Treffer: A coarse-mesh numerical method for one-speed neutron transport eigenvalue problems in two-dimensional Cartesian geometry

Title:
A coarse-mesh numerical method for one-speed neutron transport eigenvalue problems in two-dimensional Cartesian geometry
Source:
Applied and computational mathematics: selected papers of the third PanAmerican workshop, Trujillo, Peru, 24-28 April 2000Applied numerical mathematics. 40(1-2):167-177
Publisher Information:
Amsterdam: Elsevier, 2002.
Publication Year:
2002
Physical Description:
print, 7 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Approximation numérique, Numerical approximation, Equations différentielles, Ordinary differential equations, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Bord, Edge, Borde, Brame, Slab, Zamarra, Caractéristique, Characteristic, Característica, Coordonnée cartésienne, Cartesian coordinate, Coordenadas cartesianas, Erreur troncature, Truncation error, Error truncamiento, Estimation erreur, Error estimation, Estimación error, Etude comparative, Comparative study, Estudio comparativo, Fonction Green, Green function, Función Green, Fonction spectrale, Spectral function, Función espectral, Géométrie, Geometry, Geometría, Implémentation, Implementation, Ejecución, Itération, Iteration, Iteracción, Maillage, Grid pattern, Celdarada, Modèle 2 dimensions, Two dimensional model, Modelo 2 dimensiones, Méthode caractéristiques, Method of characteristics, Método características, Méthode maille, Mesh method, Método malla, Méthode numérique, Numerical method, Método numérico, Méthode spectrale, Spectral method, Método espectral, Problème valeur propre, Eigenvalue problem, Problema valor propio, Réacteur nucléaire, Nuclear reactor, Reactor nuclear, Réflecteur, Reflector, Région, Region, Región, Solution numérique, Numerical solution, Source, Fuente, Transport neutron, Neutron transport, Transporte neutrones, Troncature, Truncation, Truncamiento, Valeur propre, Eigenvalue, Valor propio
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Universidade Federal do Rio de Janeiro, Programa de Engenharia Nuclear-COPPE, P.O. Box 68509, 21945-970, Rio de Janeiro, RJ, Brazil
Universidade do Estado do Rio de Janeiro, Instituto Politécnico-IPRJ, P.O. Box 97282, 28601-970, Nova Friburgo, RJ, Brazil
ISSN:
0168-9274
Rights:
Copyright 2002 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.13404869
Database:
PASCAL Archive

Weitere Informationen

We describe a hybrid spectral nodal method applied to one-speed SN eigenvalue problems in x, y-geometry for nuclear reactor global calculations. To solve the transverse-integrated SN nodal equations, we generalize the spectral diamond (SD) method, that we developed for numerically solving slab-geometry SN eigenvalue problems with no spatial truncation error. In the present generalization, we approximate the transverse leakage through the edges of each spatial node by constants, so we call our method the SD-constant nodal (SD-CN) method that we use in the fuel regions of the nuclear reactor core. In the non-multiplying regions, e.g., reflector and baffle, we use the spectral Green's function-constant nodal (SGF-CN) method; hence the hybrid characteristic of our method. In order to converge the numerical solution for each SN fixed source problem (inner iterations) in each outer iteration (power method), we use the one-node block inversion (NBI) scheme. We show some numerical results to a typical model problem to illustrate the method's accuracy in coarse-mesh calculations.