Treffer: A multicanonical molecular dynamics study for a model protein-g
Title:
A multicanonical molecular dynamics study for a model protein-g
Authors:
Source:
Proceedings of the conference on computational physics 2000 New challenges for the new millenium, Gold Coast, Queensland, Australia, December 3-8, 2000Computer physics communications. 142(1-3):144-147
Publisher Information:
Amsterdam: Elsevier Science, 2001.
Publication Year:
2001
Physical Description:
print, 6 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Theoretical physics, Physique théorique, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Generalites, General, Instruments, appareillage, composants et techniques communs à plusieurs branches de la physique et de l'astronomie, Instruments, apparatus, components and techniques common to several branches of physics and astronomy, Informatique en physique expérimentale, Computers in experimental physics, Modélisation et simulation par ordinateur, Computer modeling and simulation, Sciences biologiques et medicales, Biological and medical sciences, Sciences biologiques fondamentales et appliquees. Psychologie, Fundamental and applied biological sciences. Psychology, Biophysique moleculaire, Molecular biophysics, Dynamique conformationnelle en biologie moléculaire, Conformational dynamics in molecular biology, Dynamics and conformational changes, Effet solvant, Solvent effect, Efecto solvente, Interaction coulombienne, Coulomb interaction, Interacción coulombiana, Interaction hydrophobe, Hydrophobic interaction, Modèle plissement, Folding model, Modélisation, Modeling, Modelización, Méthode calcul, Computing method, Método cálculo, Méthode dynamique moléculaire, Molecular dynamics method, Método dinámico molecular, Simulation ordinateur, Computer simulation, Simulación computadora, Structure protéine, Protein structure, Multicanonical molecular dynamics simulation
Document Type:
Konferenz
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Japan Science and Technology Corporation (JST), Japan
Department of Computational Science, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
Department of Physics, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
Department of Computational Science, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
Department of Physics, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
ISSN:
0010-4655
Rights:
Copyright 2002 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Metrology
Molecular biophysics
Molecular biophysics
Accession Number:
edscal.13423269
Database:
PASCAL Archive
Weitere Informationen
We have performed the multicanonical molecular dynamics simulation on a simple model protein-g (PDB id: 2gbl). We have treated the protein-g in terms of a model composing only of charged, hydrophobic, and neutral spherical bead-monomers. Since the hydrophobic interaction is considered to have a large effect on protein folding, we particularly focus on the competition between effects of Coulomb interaction and the hydrophobic interaction. We found that the transition from a random coil to compact state is greatly influenced by both parameters and forms of the hydrophobic potential function.