Result: Three-dimensional Green's functions for a multilayered half-space in displacement potentials
Dept. of Civil Engineering, Univ. of Minnesota, Minneapolis, MN 55455-0220, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Physics: solid mechanics
Theoretical physics
Further Information
To advance the mathematical and computational treatments of mixed boundary value problems involving multilayered media, a new derivation of the fundamental Green's functions for the elastodynamic problem is presented. By virtue of a method of displacement potentials, it is shown that there is an elegant mathematical structure underlying this class of three-dimensional elastodynamic problems which warrant further attention. Constituted by proper algebraic factorizations, a set of generalized transmission-reflection matrices and internal source fields that are free of any numerically unstable exponential terms common in past solution formats are proposed for effective computations of the potential solution. To encompass both elastic and viscoelastic cases, point-load Green's functions for stresses and displacements are generalized into complex-plane line-integral representations. An accompanying rigorous treatment of the singularity of the fundamental solution for arbitrary source-receiver locations via an asymptotic decomposition of the transmission-reflection matrices is also highlighted.