Result: Three-dimensional Green's functions for a multilayered half-space in displacement potentials

Title:
Three-dimensional Green's functions for a multilayered half-space in displacement potentials
Source:
Journal of engineering mechanics. 128(4):449-461
Publisher Information:
Reston, VA: American Society of Civil Engineers, 2002.
Publication Year:
2002
Physical Description:
print, 32 ref
Original Material:
INIST-CNRS
Subject Terms:
Civil engineering, Génie civil, Mechanical engineering, Génie mécanique, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Generalites, General, Méthodes mathématiques en physique, Mathematical methods in physics, Techniques de calcul, Computational techniques, Méthodes des intégrales frontières, Boundary-integral methods, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Mécanique des solides, Solid mechanics, Mécanique des structures et des milieux continus, Structural and continuum mechanics, Vibration, onde mécanique, stabilité dynamique (aéroélasticité, contrôle vibration...), Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...), Sciences appliquees, Applied sciences, Batiment. Travaux publics, Buildings. Public works, Calcul des constructions. Sollicitations, Structural analysis. Stresses, Méthodes de calcul. Tables. Abaques, Computation methods. Tables. Charts, Vibrations and mechanical waves, Champ libre, Free field, Campo libre, Charge concentrée, Concentrated load, Carga concentrada, Demi espace, Half space, Semiespacio, Elastodynamique, Elastodynamics, Elastodinámico, Fonction Green, Green function, Función Green, Milieu stratifié, Stratified medium, Medio estratificado, Modèle 3 dimensions, Three dimensional model, Modelo 3 dimensiones, Méthode numérique, Numerical method, Método numérico, Méthode potentiel, Potential method, Método potencial, Méthode élément frontière, Boundary element method, Método elemento frontera, Onde S, S wave, Onda S, Onde élastique, Elastic wave, Onda elástica, Problème mixte, Mixed problem, Problema mixto, Problème valeur limite, Boundary value problem, Problema valor limite, Source interne, Internal source, Fuente interna, Viscoélasticité, Viscoelasticity, Viscoelasticidad
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Dpet. of Civil, Environmental and Architectural Engineering, Univ. of Colorado, Boulder, CO 80309-0428, United States
Dept. of Civil Engineering, Univ. of Minnesota, Minneapolis, MN 55455-0220, United States
ISSN:
0733-9399
Rights:
Copyright 2002 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Building. Public works. Transport. Civil engineering

Mathematics

Physics: solid mechanics

Theoretical physics
Accession Number:
edscal.13569202
Database:
PASCAL Archive

Further Information

To advance the mathematical and computational treatments of mixed boundary value problems involving multilayered media, a new derivation of the fundamental Green's functions for the elastodynamic problem is presented. By virtue of a method of displacement potentials, it is shown that there is an elegant mathematical structure underlying this class of three-dimensional elastodynamic problems which warrant further attention. Constituted by proper algebraic factorizations, a set of generalized transmission-reflection matrices and internal source fields that are free of any numerically unstable exponential terms common in past solution formats are proposed for effective computations of the potential solution. To encompass both elastic and viscoelastic cases, point-load Green's functions for stresses and displacements are generalized into complex-plane line-integral representations. An accompanying rigorous treatment of the singularity of the fundamental solution for arbitrary source-receiver locations via an asymptotic decomposition of the transmission-reflection matrices is also highlighted.