Service restrictions from February 12-22, 2026—more information on the University Library website

Result: Weak approximation of killed diffusion using Euler schemes

Title:
Weak approximation of killed diffusion using Euler schemes
Authors:
Source:
Stochastic processes and their applications. 87(2):167-197
Publisher Information:
Amsterdam: Elsevier Science, 2000.
Publication Year:
2000
Physical Description:
print, 26 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Laboratoire de Probabilités et Modèles Aléatoires. Case 7012, Université Paris VII. 2, place Jussieu, 75251 Paris, France
ISSN:
0304-4149
Rights:
Copyright 2000 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.1357022
Database:
PASCAL Archive

Further Information

We study the weak approximation of a multidimensional diffusion (Xt)0≤t≤T killed as it leaves an open set D, when the diffusion is approximated by its continuous Euler scheme (Xt)0≤t≤T or by its discrete one (Xt1)0≤i≤N, with discretization step T/N. If we set τ:=inf{t > 0: Xt ¬∈ D} and τc:=inf{t > 0: Xt ¬∈ D}, we prove that the discretization error Ex[1T<τc f(XT)]-Ex[1T<τ f(XT)] can be expanded to the first order in N- provided support or regularity conditions on f. For the discrete scheme, if we set τd:=inf{ti > 0: Xti ¬∈ D}, the error Ex[1T<τd f(XT)]-Ex[1T<τ f(XT)] is of order N-1 under analogous assumptions on f. This rate of convergence is actually exact and intrinsic to the problem of discrete killing time.