Result: Linear interval tolerance problem and linear programming techniques

Title:
Linear interval tolerance problem and linear programming techniques
Source:
Reliable computing. 7(6):433-447
Publisher Information:
Heidelberg: Springer, 2001.
Publication Year:
2001
Physical Description:
print, 13 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
LIP, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
INRIA/IRISA, Campus de Beaulieu, 35042 Rennes, France
ISSN:
1385-3139
Rights:
Copyright 2002 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.13596199
Database:
PASCAL Archive

Further Information

In this paper, we consider the linear interval tolerance problem, which consists of finding the largest interval vector included in Σ∀,∃([A], [b]) = = {x ∈ Rn | ∀A ∈ [A], 3b ∈ [b], Ax = b}, We describe two different polyhedrons that represent subsets of all possible interval vectors in Σ∀,∃([A], [b]), and we provide a new definition of the optimality of an interval vector included in Σ∀,∃([A], [b]). Finally, we show how the Simplex algorithm can be applied to find an optimal interval vector in Σ∀,∃([A], [b]).