Treffer: Sharpening the estimate of the stability constant in the maximum-norm of the Crank-Nicolson scheme for the one-dimensional heat equation

Title:
Sharpening the estimate of the stability constant in the maximum-norm of the Crank-Nicolson scheme for the one-dimensional heat equation
Source:
Ninth Seminar on Numerical Solution of Differential and Differential-Algebraic Equations (NUMDIFF-9), 4-9 September 2000, Halle, GermanyApplied numerical mathematics. 42(1-3):133-140
Publisher Information:
Amsterdam: Elsevier, 2002.
Publication Year:
2002
Physical Description:
print, 21 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Eötvös Loránd University, Kecskemeti u. 10, 1053 Budapest, Hungary
University of Valladolid, Facultad de Ciencias, Prado de la Magdalena s/n, 47005 Valladolid, Spain
ISSN:
0168-9274
Rights:
Copyright 2002 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.13824390
Database:
PASCAL Archive

Weitere Informationen

This paper is concerned with the stability constant C∞ in the maximum-norm of the Crank-Nicolson scheme applied to the one-dimensional heat equation. A well known result due to S.J. Serdyukova is that C∞ < 23. In the present paper, by using a sharp resolvent estimate for the discrete Laplacian together with the Cauchy formula, it is shown that 3 ≤ C∞ < 4.325. This bound also holds when the heat equation is considered on a bounded interval along with Dirichlet or Neumann boundary conditions.