Result: On a one-dimensional optimization problem derived from the efficiency analysis of Newton-PCG-like algorithms
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Operational research. Management
Further Information
The Newton-PCG (preconditioned conjugate gradient) like algorithms are usually very efficient. However, their efficiency is mainly supported by the numerical experiments. Recently, a new kind of Newton-PCG-like algorithms is derived in (J. Optim. Theory Appl. 105 (2000) 97; Superiority analysis on truncated Newton method with preconditioned conjugate gradient technique for optimization, in preparation) by the efficiency analysis. It is proved from the theoretical point of view that their efficiency is superior to that of Newton's method for the special cases where Newton's method converges with precise Q-order 2 and α(≥ 2), respectively. In the process of extending such kind of algorithms to the more general case where Newton's method has no fixed convergence order, the first is to get the solutions to the one-dimensional optimization problems with many different parameter values of a. If these problems were solved by numerical method one by one, the computation cost would reduce the efficiency of the Newton-PCG algorithm, and therefore is unacceptable. In this paper, we overcome the difficulty by deriving an analytic expression of the solution to the one-dimensional optimization problem with respect to the parameter α.