Result: Global convergence of nonmonotone descent methods for unconstrained optimization problems

Title:
Global convergence of nonmonotone descent methods for unconstrained optimization problems
Source:
Papers presented at the 1st Sino-Japan Optimization Meeting, 26-28 October 2000, Hong Kong, ChinaJournal of computational and applied mathematics. 146(1):89-98
Publisher Information:
Amsterdam: Elsevier, 2002.
Publication Year:
2002
Physical Description:
print, 19 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
School of Mathematics and Computer Science, Nanjing Normal University, Nanjing 210097, China
Institute of Applied Mathematics, Chinese Academy of Science, Beijing 100080, China
Faculty of Business Administration and Singapore-MIT Alliance, National University of Singapore, Singapore
ISSN:
0377-0427
Rights:
Copyright 2002 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Operational research. Management
Accession Number:
edscal.13838695
Database:
PASCAL Archive

Further Information

Global convergence results are established for unconstrained optimization algorithms that utilize a nonmonotone line search procedure. This procedure allows the user to specify a flexible forcing function and includes the nonmonotone Armijo rule, the nonmonotone Goldstein rule, and the nonmonotone Wolfe rule as special cases.