Treffer: Cluster percolation and thermal critical behavior

Title:
Cluster percolation and thermal critical behavior
Authors:
Source:
Proceedings of the europhysics conference on computational physics (CCP 2001): computational modeling and simulation of complex systems, Aachen, Germany, September 5-8, 2001Computer physics communications. 147(1-2):46-51
Publisher Information:
Amsterdam: Elsevier Science, 2002.
Publication Year:
2002
Physical Description:
print, 17 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld, Germany
ISSN:
0010-4655
Rights:
Copyright 2003 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics of elementary particles and fields
Accession Number:
edscal.13855008
Database:
PASCAL Archive

Weitere Informationen

Continuous phase transitions in spin systems can be formulated as percolation of suitably defined clusters. We review this equivalence and then discuss how in a similar way, the color deconfinement transition in SU(2) gauge theory can be treated as a percolation phenomenon. In the presence of an external field, spin systems cease to show thermal critical behavior, but the geometric percolation transition persists (Kertész line). For H ¬= 0, we study the relation between percolation and pseudocritical behavior, both for continuous and first order transitions, and show that it leads to the necessity of an H-dependent cluster definition. A viable formulation of this kind could serve as a definition of deconfinement in QCD with dynamical quarks.