Treffer: Calibration of a Monte Carlo simulation model of disease spread in slaughter pig units

Title:
Calibration of a Monte Carlo simulation model of disease spread in slaughter pig units
Authors:
Source:
The First European Conference for Information Technology in AgricultureComputers and electronics in agriculture. 25(3):245-259
Publisher Information:
Amsterdam: Elsevier, 2000.
Publication Year:
2000
Physical Description:
print, 22 ref
Original Material:
INIST-CNRS
Subject Terms:
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Biometry Research Unit, Danish Institute of Agricultural Sciences, P.O. Box 50, 8830 Tjele, Denmark
ISSN:
0168-1699
Rights:
Copyright 2000 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Animal productions

FRANCIS
Accession Number:
edscal.1387917
Database:
PASCAL Archive

Weitere Informationen

The use of new resampling methods to improve the handling of stochastic simulation models is demonstrated. As an example, we use a Monte-Carlo simulation model of disease spread within a slaughter pig herd. The model parameters reflect the disease spread and comprise, for example infection risk given diseases, and the positioning of the animals. The setting of the prior distribution of the parameters using expert knowledge is complicated, because the expert knowledge is generally based on the resulting dynamics rather than the underlying parameters. The paper shows how the prior distribution of model parameters can be made consistent with the knowledge concerning model output, using methods such as importance sampling and Markov Chain Monte Carlo techniques. Based on these methods, different management strategies are compared.