Treffer: Calibration of a Monte Carlo simulation model of disease spread in slaughter pig units
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
FRANCIS
Weitere Informationen
The use of new resampling methods to improve the handling of stochastic simulation models is demonstrated. As an example, we use a Monte-Carlo simulation model of disease spread within a slaughter pig herd. The model parameters reflect the disease spread and comprise, for example infection risk given diseases, and the positioning of the animals. The setting of the prior distribution of the parameters using expert knowledge is complicated, because the expert knowledge is generally based on the resulting dynamics rather than the underlying parameters. The paper shows how the prior distribution of model parameters can be made consistent with the knowledge concerning model output, using methods such as importance sampling and Markov Chain Monte Carlo techniques. Based on these methods, different management strategies are compared.