Treffer: Solving the Birkhoff Interpolation Problem via the critical point method : An experimental study

Title:
Solving the Birkhoff Interpolation Problem via the critical point method : An experimental study
Source:
ADG 2000 : automated deduction in geometry (Zurich, 25-27 September 2000, revised papers)Lecture notes in computer science. :26-40
Publisher Information:
Berlin: Springer, 2001.
Publication Year:
2001
Physical Description:
print, 35 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
LORIA, INRIA-Lorraine, Nancy, France
CALFOR, LIP6, University Paris VI, Paris, France
Laboratoire GAGE, École Polytechnique, Palaiseau, France
ISSN:
0302-9743
Rights:
Copyright 2002 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.14047714
Database:
PASCAL Archive

Weitere Informationen

Following the work of Gonzalez-Vega, this paper is devoted to showing how to use recent algorithmic tools of computational real algebraic geometry to solve the Birkhoff Interpolation Problem. We recall and partly improve two algorithms to find at least one point in each connected component of a real algebraic set defined by a single equation or a system of polynomial equations, both based on the computation of the critical points of a distance function. These algorithms are used to solve the Birkhoff Interpolation Problem in a case which was known as an open problem. The solution is available at the U.R.L.: http://www-calfor.lip6.fr/∼safey/applications.html.