Treffer: Application of data mining techniques to identify data anomalies: A case study in the oil and gas industry
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Energy
Weitere Informationen
This paper presents the application of the AgentMiner<TM> tool suite to improve the efficiency of detecting data anomalies in oil well log and production data sets, which have traditionally been done by hand or through the use of database business rules. There was a need to verify the data sets, once cleansed and certified to ensure that the existing data certification process was effective. There was also a need to identify more complex relational data anomalies that cannot be addressed by simple business rules. Analysis techniques including statistical clustering, correlation and 3-D data visualization techniques were successfully utilized to identify potential complex data anomalies. A data-preprocessing tool was also applied to automatically detect simple data errors such as missing, out of range, and null values. The pre-processing tools were also used to prepare the data sets for further statistical and visualization analyses. To enhance the discovery of data anomalies two different data visualization tools for the data clusters were applied.