Treffer: Application of data mining techniques to identify data anomalies: A case study in the oil and gas industry

Title:
Application of data mining techniques to identify data anomalies: A case study in the oil and gas industry
Source:
Data mining and knowledge discovery : theory, tools, and technology (Orlando FL, 1-4 April 2002)SPIE proceedings series. :309-318
Publisher Information:
Bellingham WA: SPIE, 2002.
Publication Year:
2002
Physical Description:
print, 2 ref
Original Material:
INIST-CNRS
Subject Terms:
Electronics, Electronique, Computer science, Informatique, Optics, Optique, Physics, Physique, Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Energie, Energy, Combustibles, Fuels, Pétrole et gaz. Produits pétroliers, Crude oil, natural gas and petroleum products, Généralités, General, Analyse donnée, Data analysis, Análisis datos, Analyse statistique, Statistical analysis, Análisis estadístico, Anomalie, Anomaly, Anomalía, Base donnée, Database, Base dato, Certification, Certificación, Classification, Clasificación, Corrélation, Correlation, Correlación, Découverte connaissance, Knowledge discovery, Descubrimiento conocimiento, Extraction information, Information extraction, Extracción información, Fouille donnée, Data mining, Busca dato, Industrie gazière, Gas industry, Industria del gas, Industrie pétrolière, Oil industry, Industria petrolera, Langage JAVA, JAVA language, Lenguaje JAVA, Modèle 3 dimensions, Three dimensional model, Modelo 3 dimensiones, Puits pétrole, Oil well, Pozo petróleo, Traitement donnée, Data processing, Tratamiento datos, Visualisation donnée, Data visualization
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Science Applications International Corporation, 12479 Research Parkway, Orlando, FL 32826, United States
Rights:
Copyright 2002 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Energy
Accession Number:
edscal.14182362
Database:
PASCAL Archive

Weitere Informationen

This paper presents the application of the AgentMiner<TM> tool suite to improve the efficiency of detecting data anomalies in oil well log and production data sets, which have traditionally been done by hand or through the use of database business rules. There was a need to verify the data sets, once cleansed and certified to ensure that the existing data certification process was effective. There was also a need to identify more complex relational data anomalies that cannot be addressed by simple business rules. Analysis techniques including statistical clustering, correlation and 3-D data visualization techniques were successfully utilized to identify potential complex data anomalies. A data-preprocessing tool was also applied to automatically detect simple data errors such as missing, out of range, and null values. The pre-processing tools were also used to prepare the data sets for further statistical and visualization analyses. To enhance the discovery of data anomalies two different data visualization tools for the data clusters were applied.