Treffer: Brain slicer: A high performance internet-based neuro-medical imaging system

Title:
Brain slicer: A high performance internet-based neuro-medical imaging system
Source:
Visualization, image-guided procedures, and display (San Diego CA, 24-26 Fabruary 2002)SPIE proceedings series. :327-338
Publisher Information:
Bellingham WA: SPIE, 2002.
Publication Year:
2002
Physical Description:
print, 27 ref
Original Material:
INIST-CNRS
Subject Terms:
Electronics, Electronique, Biomedical engineering, Génie biomédical, Optics, Optique, Physics, Physique, Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Sciences biologiques et medicales, Biological and medical sciences, Sciences medicales, Medical sciences, Informatique, statistique et modelisations biomedicales, Computerized, statistical medical data processing and models in biomedicine, Modèles et simulation, Models and simulation, Algorithme parallèle, Parallel algorithm, Algoritmo paralelo, Codage linéaire, Linear coding, Codificación lineal, Code linéaire, Linear code, Código lineal, Encéphale, Brain (vertebrata), Encéfalo, Formation image, Imaging, Formación imagen, Haute performance, High performance, Alto rendimiento, Haute résolution, High resolution, Alta resolucion, Image numérique, Digital image, Imagen numérica, Imagerie médicale, Medical imagery, Imaginería médica, Modèle 3 dimensions, Three dimensional model, Modelo 3 dimensiones, Octarbre, Octree, Octárbol, Processeur pipeline, Pipeline processor, Procesador oleoducto, Quad arbre, Quad tree, Quad árbol, Résolution image, Image resolution, Structure donnée, Data structure, Estructura datos, Structure fichier, File structure, Estructura archivo, Système nerveux central, Central nervous system, Sistema nervioso central, Level of detail, Neuroinformatique
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Computer Science Department, University of Illinois at Urbana-Champaign, 3310 DCL, MC 258, 1304, W. Springfield, Urbana, IL 61801, United States
Beckman Institute, University of Illinois at Urbana-Champaign, 2357 Beckman Institute, MC 251, 405 N. Mathews, Urbana, IL 61801, United States
Rights:
Copyright 2002 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Public health. Hygiene-occupational medicine. Information processing
Accession Number:
edscal.14182480
Database:
PASCAL Archive

Weitere Informationen

In this paper, we present a neuro-medical imaging system called the Brain Slicer, which allows neuroscientists to construct a three-dimensional digital brain atlas from an array of high-resolution parallel section images and obtain arbitrary oblique section images from the digital atlas. This application is based on a new data structure, the Scalable Hyper-Space File (SHSF). The SHSF is a generalized data structure that can represent a hyperspace of any dimension. The two-dimensional SHSF is a scalable linear quadtree and the three-dimensional SHSF is a scalable linear octree. Unlike the normal linear quadtree and octree, the data structure uses a scalable linear coding scheme. It recursively uses fixed-length linear code to encode the hyperspace, which is efficient in terms of storage space and accessing speed. The structure lends itself well to pipelined parallel operations in constructing the volumetric data set, so that it enjoys excellent performance even though the huge data set imposes heavy disk I/O requirements. The data structure can provide different levels of detail; therefore it can be used in an environment where the bandwidth and computation power is limited, such as the Internet and slow desktop computers. We envision that this methodology can be used in many areas other than neuro-medical imaging.