Treffer: Inverse extremal problems for stationary equations in mass transfer theory
Title:
Inverse extremal problems for stationary equations in mass transfer theory
Authors:
Source:
Computational mathematics and mathematical physics. 42(3):363-376
Publisher Information:
Birmingham, AL; Moscow: Maik Nauka/Interperiodica, 2002.
Publication Year:
2002
Physical Description:
print, 25 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Mechanics acoustics, Mécanique et acoustique, Theoretical physics, Physique théorique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Programmation mathématique numérique, Numerical methods in mathematical programming, Physique, Physics, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Transfert de chaleur, Heat transfer, Transfert de chaleur dans les milieux inhomogènes, dans les milieux poreux et à travers les interfaces, Heat transfer in inhomogeneous media, in porous media, and through interfaces, Condition aux limites, Boundary conditions, Condition optimalité, Optimality condition, Condición optimalidad, Inégalité variationnelle, Variational inequality, Desigualdad variacional, Minimisation, Minimization, Modèle Boussinesq, Boussinesq model, Modelo Boussinesq, Principe minimum, Minimum principle, Problème Dirichlet, Dirichlet problem, Problème inverse, Inverse problems, Problème valeur limite, Boundary-value problems, Théorie, Theory, Teoría, Théorème existence, Existence theorem, Teorema existencia, Transfert masse, Mass transfer, Frontière Lipschitz, Lipschitz boundary, Modèle Oberbek Boussinesq, Oberbek Boussinesq model, Problème extrémal, Extremal problem
Document Type:
Fachzeitschrift
Article
File Description:
text
Language:
English
Author Affiliations:
Institute of Applied Mechanics, Far East Division, Russian Academy of Sciences, ul. Radio 7, Vladivostok, 690041, Russian Federation
ISSN:
0965-5425
Rights:
Copyright 2002 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Physics: heat transfer
Physics: heat transfer
Accession Number:
edscal.14186546
Database:
PASCAL Archive
Weitere Informationen
Inverse extremal problems for a stationary system of mass transfer equations that describe the propagation of an impurity in a viscous incompressible fluid are considered. These problems imply determining unknown impurity sources on the basis of the information on the induced concentration field. Solvability of the direct and inverse extremal problems is studied, and optimality systems are derived and analyzed.