Treffer: A learning technique for a general purpose optimizer

Title:
A learning technique for a general purpose optimizer
Source:
Control applications in post-harvest and processing technology. Proceedings of the 2nd IFAC/ISHS/CIGR/EURAGENG International Workshop held in Budapest, Hungary, 3-5 June 1998Computers and electronics in agriculture. 26(2):83-103
Publisher Information:
Amsterdam: Elsevier, 2000.
Publication Year:
2000
Physical Description:
print, 20 ref
Original Material:
INIST-CNRS
Subject Terms:
Agronomy, agriculture, phytopathology, Agronomie, agriculture, phytopathologie, Electronics, Electronique, Computer science, Informatique, Sciences biologiques et medicales, Biological and medical sciences, Sciences biologiques fondamentales et appliquees. Psychologie, Fundamental and applied biological sciences. Psychology, Agronomie. Sciences du sol et productions vegetales, Agronomy. Soil science and plant productions, Agronomie générale. Phytotechnie, General agronomy. Plant production, Cultures hors sol. Cultures protégées, Soilless cultures. Protected cultivation, Cultures hors sol et sans sol. Fertilisation par co2, Soilless cultures. Co2 fertilization, Assistance ordinateur, Computer aid, Asistencia ordenador, Brouillard, Fog, Niebla, Capteur mesure, Measurement sensor, Captador medida, Humidité, Humidity, Humedad, Algorithme apprentissage, Learning algorithm, Algoritmo aprendizaje, Capteur humidité, Moisture sensor, Sensor humedad, Chambre culture, Growth chamber, Commande adaptative, Adaptive control, Control adaptativo, Feuille végétal, Plant leaf, Hoja vegetal, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Modélisation, Modeling, Modelización, Optimiseur, Optimizer, Optimizador, Perceptron, Système commande, Control system, Sistema control, Traitement automatisé, Automated processing, Tratamiento automatizado, Traitement informatique, Computerized processing, Tratamiento informático, MULTIPLICATION AVEC BROUILLARD, MIST PROPAGATION, PROPAGACION BAJO NEBLINA
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Agricultural Engineering, Agricultural University of Athens, Athens 11855, Greece
Aristotle University of Thessaloniki, Department of Hydraulics, Soil Science and Agricultural Engineering, 54006 Thessaloniki, Greece
Biosystems and Agricultural Engineering Department, University of Kentucky, Lexington, KY 40546-0276, United States
ISSN:
0168-1699
Rights:
Copyright 2000 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Agronomy. Soil sciences and vegetal productions
Accession Number:
edscal.1435824
Database:
PASCAL Archive

Weitere Informationen

The goal of the machine learning method implemented in this article is to broaden the region of operability of an adaptive control system by switching multiple controller models. The learning system determines a separate set of control parameter values, for optimal performance under given operating conditions, and stores them in memory. In this way, the controller is able to operate effectively over the whole environment. The basic scheme implements a single neuron, the perceptron, which approximates the process model and then directly computes the control signals. An example application is also described of an innovative sensing method, which has been developed to replace leaf sensors in plant propagation chambers, by emulating the sensor in software. Such chambers present critical situations for control because of the high humidity levels required, which makes direct sensing methods unsuitable. The proposed method enhanced the reliability of the control system and eliminated the need for costly electronic leaf sensors and the associated need for great care and frequent calibration. The method in principle combines ordinary measurements of ambient temperature, humidity and radiation, to calculate the controls of the humidification process in mist or fog propagation chambers. The performance surface was studied and a modification of the searching algorithm has improved the learning rate significantly. The method is applicable to any system whose performance can be defined and measured by simulation or experiment.