Treffer: Geophysical data analysis using Python

Title:
Geophysical data analysis using Python
Source:
Computers & geosciences. 28(4):457-465
Publisher Information:
Oxford: Elsevier Science, 2002.
Publication Year:
2002
Physical Description:
print, Illustration, 36 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Depto. de Física Aplicada II, Universidad del País Vasco, Apdo. 644, 48080-Bilbao, Spain
Depto. de Física de la Materia Condensada, Universidad del País Vasco, Apdo. 644, 48080-Bibao, Spain
ISSN:
0098-3004
Rights:
Copyright 2003 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Earth sciences
Accession Number:
edscal.14395265
Database:
PASCAL Archive

Weitere Informationen

A set of routines designed for geophysical data analysis that make extensive use of the numerical extensions to the computer language Python are presented. The routines perform some typical tasks during multivariate analysis of geophysical fields, such as principal component analysis and related tasks (truncation rules by means of analytical and Monte Carlo techniques). Other functions perform singular value decomposition of covariance matrices and canonical correlation analysis for coupled variability of geophysical fields. Other parts of the package allow access to a library of statistical distribution functions, multivariate digital filters, time-handling routines, kernel-based probability density function estimation and differential operators over the sphere for gridded data sets. As they rely on the numerical extensions to the Python language, they are fast for numerical analysis. The programs make the analysis of geophysical data sets both easier and faster.